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Identifying the network structure of a neuron ensemble beyond the standard measure of pairwise correla-
tions is critical for understanding how information is transferred within such a neural population. However,
the spike train data pose significant challenges to conventional statistical methods due to not only the com-
plexity, massive size, and large scale, but also high dimensionality. In this article, we propose a novel
“structural information enhanced” (SIE) regularization method for estimating the conditional intensities
under the generalized linear model (GLM) framework to better capture the functional connectivity among
neurons. We study the consistency of parameter estimation of the proposed method. A new “accelerated
full gradient update” algorithm is developed to efficiently handle the complex penalty in the SIE-GLM for
large sparse datasets applicable to spike train data. Simulation results indicate that our proposed method
outperforms existing approaches. An application of the proposed method to a real spike train dataset,
obtained from the prelimbic region of the prefrontal cortex of adult male rats when performing a T-maze
based delayed-alternation task of working memory, provides some insight into the neuronal network in
that region.

KEY WORDS: Conditional intensity; Generalized linear model; Neuronal response; Regularization;
Spike train data.

1. INTRODUCTION

The capacity to simultaneously record spike trains of many
neurons from behaving subjects has surpassed our ability to de-
scribe putative neural codes distributed across populations of
neurons. Detecting the network structure or graph structure of
a neuron ensemble beyond the standard measure of pairwise
correlations is critical for understanding how information is
transferred within such a neural population. In this application,
the spike train data, which is typically collected as multivari-
ate point processes, present statisticians with many exciting
opportunities as well as significant challenges in data analysis
and in interpretation of results, due to not only the complex-
ity, massive size, and large scale, but also high dimensionality
and nonstationary temporal/spatial dependence structure. First,
neural spike trains of this type are generally nonstationary and
exhibit a great amount of variability among repeated trials. Sec-
ond, there is evidence showing that patterns of the neural spike
activity among neurons may vary with different experimental

conditions. Third, the high-dimensional nature of the spike train
data from these experiments makes the analysis extremely com-
putationally intensive.

1.1 Existing Work

Several existing methods have been proposed to identify func-
tional connections within an ensemble of neurons. For example,
some early works using nonparametric methods, such as the
cross-correlogram (Perkel, Gerstein, and Moore 1967) and joint
peri-stimulus time histogram (Gerstein and Perkel 1969), pro-
vide useful insights and are still commonly used for analyzing
the interactions between neurons. However, these methods have
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some limitations. They focus on the pairwise relationship alone,
ignoring either the possible connections with other neurons in
the ensemble or the influences from external stimuli. Further-
more, correlation-based analysis is suitable for describing the
linear aspect of connectivity, which might be inadequate for
depicting neuronal spike activities. Recently, the model-based
approaches draw a great deal of attention from researchers, in
which a specific point process model is assumed, including the
inhomogeneous Poisson process or more generally Cox point
process (Cox and Isham 1980).

In the literature, the conventional GLM (McCullagh and
Nelder 1989) has been widely used to analyze the spike point
processes where the firing rate of a single neuron is modeled as
a function of spiking history of concurrently recorded ensemble
neurons (Brillinger 1992). This GLM approach has been suc-
cessfully applied to spike train data from many different types of
experiments and becomes a very powerful and efficient tool of
neural encoding and decoding (Truccolo et al. 2005; Pillow et al.
2008). One significant advantage of the GLM approach is that
the connections between every pair of neurons can be modeled
as parameters of the GLM, followed by being analyzed simul-
taneously under the general framework (Okatan, Wilson, and
Brown 2005). In this setting, the influence from one neuron to
another one is described by a set of temporal interactive param-
eters whose sign and magnitude indicate how neurons interact
with each other. A more comprehensive review can be found in
Brown, Kass, and Mitra (2004) and Truccolo (2010). We will
focus mainly on the GLM framework in the rest of our article;
nevertheless, it is worth noting that other statistical models, such
as the Cox model (Berry et al. 2012) and the dynamical Bayesian
network (Eldawlatly et al. 2010), are also useful tools for infer-
ring the functional connections among ensemble neurons.

It is well known that the maximum likelihood estimator
(MLE) is generally applicable to estimate model parameters in
GLM, but it is also known to be vulnerable to over-fitting prob-
lems, which frequently arise from analysis of high-dimensional
data. For a typical real neural spike train dataset, the spiking
rate is often very low and the design matrix could be very
sparse; for example, more than 90% of its entries are zeros.
In such cases, the MLE may not be reliable. Therefore, some
regularization techniques can be applied to obtain well behaved
solutions to over-parameterized estimation problems (Bickel
and Li 2006). On the other hand, a sparse solution is desirable,
since the neurons may not be connected to all other neurons
in a large population and the sparsity could improve the
interpretability. Since the standard MLE does not automatically
produce a sparse solution and the estimated parameters using
MLE are almost surely nonzero, some additional steps (e.g.,
multiple hypothesis testing procedures controlling either the
family-wise error rate or false discovery rate as in Gerhard et al.
(2011); Kim et al. (2011), and Berry et al. (2012)) are usually
needed to select the significant parameters that correspond to
those truly functional connections among neurons.

For above reasons, a class of nonsmooth penalties, including
the L1 penalty or Lasso (Tibshirani 1996), and the SCAD (Fan
1997), are introduced to achieve the goal of both obtaining a
stable estimate and encouraging a sparse solution. The L1 reg-
ularized GLM has been studied in the neuroscience literature
(Kelly et al. 2010; Chen et al. 2011; Mishchenko, Vogelstein,

and Paninski 2011; Zhao et al. 2012) due to its simplicity, easy
implementation, and good performance. Furthermore, regular-
ization or penalization can also be interpreted as imposing a prior
on the parameters from a Bayesian perspective, and the regular-
ized log-likelihood can be viewed as the log-posterior density
of the parameters (Stevenson et al. 2009). Thus, the regularized
maximum likelihood estimate is equivalent to the maximum a
posteriori estimate from the Bayesian point of view.

1.2 Motivation for Our Work

However, to our knowledge, little published work on neural
spike train data has fully considered the structural information
of the parameter space, in which all parameters related to the
interaction between one specific pair of neurons naturally form
a group and the whole group could be better estimated together.
Instead of treating all parameters individually, we wish to be
able to make decisions jointly with the grouping information
and promote the structured sparsity, that is, select the entire
group of parameters, or make the inclusion of some parameters
depend on the inclusion of other parameters. Some recent works
in the statistics literature have explored this direction by the use
of group or hierarchical norm penalties and illustrated some
promising properties, particularly the group Lasso (Yuan and
Lin 2006; Meier, Van De Geer, and Buhlmann 2008), the sparse
group Lasso (Chatterjee et al. 2012; Simon et al. 2013), and
others (Liu and Ye 2010).

In this article, we will study the spike train data by adopting
the generalized linear model (GLM) framework from Brillinger
(1992), which has shown the superiority in modeling the spiking
activities of neurons (Truccolo et al. 2005; Devilbiss, Jenison,
and Berridge 2012). However, we find that certain structural
information of the parameter space in the GLM has not been
fully used in the previous works. This motivates us to propose a
“structural information enhanced” (SIE) regularization method
for the spike train data to better investigate the functional con-
nectivity within a neuronal network.

In this article, we propose a new “structured” regularization
method for the spike train data to incorporate the structural
prior information into the modeling procedure and guide the
selection of parameters according to the underlying structure of
the parameter space. Main contributions of our work are listed
in the following parts.

• We introduce the SIE-GLM, a group-structured regular-
ized GLM, in the context of multiple spike train data and
demonstrate that our method performs better than existing
approaches on simulated spike train data.

• The proposed method can be shown to be estimation con-
sistent.

• A fast and efficient algorithm, called “accelerated full gra-
dient update” (AFGU), is developed to efficiently han-
dle the complex penalty in the SIE-GLM for large sparse
datasets applicable to spike train data.

• The prefrontal cortex (PFC) plays an important role in
cognitive and behavioral processes. An application of the
proposed method to a real spike train dataset, obtained from
the prelimbic region of the prefrontal cortex (plPFC) of
adult male rats when performing a T-maze based delayed-
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alternation task of working memory, provides some insight
into the neuronal network in that region.

The rest of the article will proceed as follows. Section 2 in-
troduces the proposed SIE-GLM in the context of multiple neu-
ral spike train data and proposes the AFGU algorithm for the
group-structured regularization. Section 3 explores theoretical
properties of the proposed method. Section 4 presents simula-
tion results to assess our method. Section 5 describes a neural
spike train dataset recorded from animals performing a cogni-
tive task and illustrates the efficacy of our proposed method.
Section 6 concludes with a brief discussion. Technical assump-
tions and detailed proofs are relegated to the appendix in the
supplementary materials available online.

2. METHODOLOGICAL DEVELOPMENT

We start with a brief description of modeling neural spike train
data in Section 2.1, followed by the proposed SIE-GLM mod-
eling, parameter estimation, and implementation algorithm in
Sections 2.2 and 2.3.

2.1 Background of Modeling Neural Spike Train Data

Consider an ensemble consisting of C neurons. The spike
train data are usually collected as multivariate (i.e., C-variate)
point processes, denoted by

0 < uc,1 < uc,2 < · · · < uc,Jc
≤ T , for c = 1, . . . , C,

where Jc is the total number of observed spikes by neuron c
during the experiment, {uc,i}Jc

i=1 are the timestamps when neuron
c spikes, and T is the time length of the experiment trial. Here, we
will take a discrete-time approach, where the whole experiment
time period (0, T ] is divided into n equally spaced time bins,
τ

k
≡ (tk−1, tk], each of length δ = T/n, that is, tk = kδ, k =

0, 1, . . . , n. Denote by Nc(τ
k
) the number of spikes fired by

neuron c within the kth time bin τ
k
, and by N1:C(τ0:k ) the spiking

history of all neurons up to the time point tk , where τ0:k = (0, tk].
We model the distribution of the Poisson-type variable,

Nc(τ
k
), by means of the generalized linear model (GLM) for

the conditional intensity. Here, the conditional intensity func-
tion of neuron c, denoted by

λc(τ
k
| ·) = E{Nc(τ

k
) | ·},

takes into account several inputs at time tk or earlier and has the
form,

log{λc(τ
k
| N1:C(τ0:(k−1) ), X(τ

k
))} = γc;0 +

P∑
p=1

γc;p Nc(τ
k−p

)

+
∑

i∈{1,...,C}\c

{ Q∑
q=1

γc,i;q Ni(τk−q
)

}
+X(τ

k
)T βc, k=1, . . . , n,

(2.1)

where

• exp(γc;0) with the intercept γc;0 represents the baseline fir-
ing rate of neuron c.

• ∑P
p=1 γc;p Nc(τ

k−p
) is the effect of the intrinsic spiking his-

tory of neuron c, up to P bins into the past with γc;p repre-
senting the autoregressive parameter at lag p.

• ∑Q
q=1 γc,i;q Ni(τk−q

) describes the influence of neuron i on
neuron c. Such influence is computed based on a spiking
history window, up to Q bins into the past where γc,i;q rep-
resents the interactive parameter at lag q. For example, if
γc,i;q is positive, neuron i would functionally excite neuron
c after time lag of q bins. The larger the value of γc,i;q , the
stronger the excitatory drive.

• In (2.1), X(τ
k
) = (Xτ

k
,1, . . . , Xτ

k
,M )T is an M-dimensional

vector representing some extrinsic covariates mea-
sured during the kth time bin, τ

k
, while βc =

(βc,1, . . . , βc,M )T represents the vector of corresponding
parameters. For example, X(τ

k
) includes several status in-

dicators related to the performance of the animals in a
behavioral task for electrophysiological recordings (de-
scribed in Section 5; see, e.g., Table S6 in the online sup-
plementary materials).

Model (2.1) enables us to simultaneously handle several fac-
tors, including the spike history, neuronal network structure,
and other covariates. Note that we distinguish the influence of
each neuron’s own spiking history from the influences coming
from other neurons, and allow the lengths P and Q of the history
windows to be different to achieve greater flexibility.

Regarding the model assumption, we assume that the numbers
of spikes randomly fired by different neurons are conditionally
independent given the complete spiking history of the whole
ensemble and covariates X(τ

k
), that is, Ni(τk

) is independent
of Nj (τ

k
) given N1:C(τ0:(k−1) ) and X(τ

k
) for any 1 ≤ i, j ≤ C,

with i �= j and 1 ≤ k ≤ n. Under this GLM framework, the
conditional likelihood of the observed spike trains is then written
as

C∏
c=1

[
n∏

k=1

{λc(τ
k
| ·)}Nc(τ

k
) exp{−λc(τ

k
| ·)}

{Nc(τ
k
)}!

]
.

The conventional MLEs of parameters in (2.1) can be obtained
by minimizing the negative log-likelihood,

C∑
c=1

�c (̃θ c), (2.2)

with respect to {̃θ c}Cc=1, where

�c (̃θ c) = −1

n

n∑
k=1

[
Nc(τ

k
) log

{
λc

(
τ

k
| ·)}− λc

(
τ

k
| ·)

− log
({Nc(τ

k
)}!)] (2.3)

is the negative log-likelihood of a single neuron c, and the vector

θ̃ c = (γc;0, {γc;p}p=1,...,P , {γc,i;q}i∈{1,...,C}\c; q=1,...,Q,

{βc,m}m=1,...,M )T

collects all parameters for neuron c, including the baseline firing
rate γc;0 as the intercept. We shall see that minimizing (2.2) is
separable for each neuron, and thus can be equivalently solved
by minimizing �c (̃θ c) for each neuron c. Therefore, we will
analyze each neuron individually in the rest of the article.
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2.2 Proposed SIE-GLM and Estimation

Regularization or penalization is a very useful technique
aiming at obtaining well-behaved solutions in some large-
dimensional problems with sparse signals. Given the large di-
mensionality and large portion of zero entries in spike train data,
the nonregularized estimation usually suffers from the over-
fitting problem and results in unstable solutions. Furthermore,
the interactive parameters γc,i;q representing the functional con-
nection between neuron cells are assumed to be sparse. However,
the nonregularized estimator, that is, the conventional MLE, fails
to supply a sparse estimation of those parameters.

Here, we wish to propose an appropriate regularization
for estimating parameters in model (2.1). Among numerous
variable selection methods that are recently developed based on
regularization, Lasso using the L1 penalty (Tibshirani 1996) is
one of the most popular methods due to its simplicity and good
performance. The general form of a Lasso solution is defined
as follows,

min
θ̃

{
�(̃θ) + η‖θ‖1

}
,

where �(̃θ ) is usually the negative log-likelihood function or
other appropriate forms of loss functions, θ is the vector of all
parameters in θ̃ excluding the intercept, η is a tuning parameter,
and ‖ · ‖1 denotes the L1 norm of a vector, that is, the sum
of absolute values of all coordinates. Such L1 regularized
GLM has been studied in some recent work, including Kelly
et al. (2010) and Zhao et al. (2012), and it shows a lot of
advantages and provides significant improvement.

However, Lasso by design can only treat all parameters indi-
vidually, but is not able to incorporate the structural information
inherent in a particular dataset. As mentioned earlier, for any two
different neurons, for example, neuron c and neuron i, the pa-
rameters {γc,i;q : q = 1, . . . ,Q} together describe one set of in-
teractive parameters, which induces a natural “grouping” of the
parameters in our problem. It is thus natural to design alternative
regularization methods that can promote a structured sparse so-
lution. Recently, Simon et al. (2013) proposed the sparse group
lasso (SGL), which can perform the selection of parameters at
both the group level and the individual level. The general form
of a SGL solution is

min
θ̃

{
�(̃θ) + (1 − α)η

G∑
g=1

√
pg‖θ (g)‖2 + αη‖θ‖1

}
,

where θ is partitioned into G groups so that θ =
(θ (1)T , . . . , θ (G)T )T , pg is the length of parameters in θ (g) corre-
sponding to the gth group, and ‖ · ‖2 denotes the L2 norm of a
vector. Here, both α ∈ [0, 1] and η > 0 are tuning parameters.
The SGL penalty term is a convex combination of the Lasso
and group Lasso penalties controlled by α. Smaller values of
α promote the sparsity at the group level, while larger values of
α encourage the individual sparsity.

Motivated by the structured penalties mentioned above, we
now formulate the regularized SIE-GLM in our setting as fol-
lows. Recall that parameters in (2.1) are grouped in two types,
one corresponding to the autoregressive parameters, denoted by

γ (c) = (γc;1, . . . , γc;P )T ,

and another corresponding to the interactive parameters, denoted
by

γ (c,i) = (γc,i;1, . . . , γc,i;Q)T , where i ∈ {1, . . . , C} \ c. (2.4)

In the meantime, the parameters in

βc = (βc,1, . . . , βc,M )T

for the covariates X(τ
k
) are not grouped together and

are treated as stand-alone variables. Following (2.3),

our proposed SIE-GLM estimator ̂̃θ c = (γ̂c;0, θ̂
T

c )T =
(γ̂c;0, {γ̂c;p}p=1,...,P , {γ̂c,i;q}i∈{1,...,C}\c; q=1,...,Q, {β̂c,m}m=1,...,M )T

minimizes

Lc (̃θ c) = �c (̃θ c) + P(ηc ,αc )(θ c), (2.5)

where �c (̃θ c) is as defined in (2.3) and

P(ηc ,αc )(θ c) = (1 − α
c
)η

c

⎧⎨⎩√
P

∥∥∥γ (c)
∥∥∥

2
+
√

Q
∑

i∈{1,...,C}\c

∥∥∥γ (c,i)
∥∥∥

2

⎫⎬⎭
+α

c
η

c

⎧⎨⎩∥∥∥γ (c)
∥∥∥

1
+

∑
i∈{1,...,C}\c

∥∥∥γ (c,i)
∥∥∥

1

⎫⎬⎭+ η
c

∥∥∥βc

∥∥∥
1

(2.6)

denotes the structured penalty term. As a comparison, the
L1 penalty uses η

c
‖θ c‖1 and is a special case of (2.6) corre-

sponding to α
c
= 1.

Note that the penalty terms can also be easily extended to
adapt to more complex types of hierarchical structures; see, for
example, in Liu and Ye (2010).

2.2.1 Tuning Parameter Selection. We choose the tuning
parameters η

c
and α

c
to minimize the BIC function

BICc (̂̃θ c) = 2 �c (̂̃θ c) + df(̂θ c) log(n)/n, (2.7)

where �c(·) is defined in (2.3) and df(̂θ c)=αc{
∑P

p=1 I(γ̂c;p �=
0)+∑ i∈{1,...,C}\c;

q=1,...,Q

I(γ̂c,i;q �=0) +∑M
m=1 I(β̂c,m �=0)}+(1−αc){I(‖γ̂ (c)‖2 �=0)+∑i∈{1,...,C}\c I

(‖γ̂ (c,i)‖2 �=0)+∑M
m=1 I(β̂c,m �=0)}. BICc (̂̃θ c) is a bivariate function of

(η
c
, α

c
), since ̂̃θ c and θ̂ c both depend on η

c
and α

c
, that is,̂̃θ c = ̂̃θ (ηc ,αc )

c and θ̂ c = θ̂
(ηc ,αc )
c . The minimizer is found by the

grid search. We select α
c
∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and for each

given α
c
, the grid points for η

c
are {ηmaxh

i : i = 0, . . . , 12},
where ηmax = sup{ηc : df{̂θ (ηc,αc)

c } > 0} and h ∈ (0, 1) are
constants with ηmax depending on αc. In practice, we may have
to drop the small values of η

c
in case that the algorithm doesn’t

converge.
Note that AIC as another popular model selection criterion is

not suitable for our purpose, because AIC usually performs bet-
ter for prediction but not very well for variable selection. While
the main objective of the study is to learn the functional connec-
tivity between neurons, that is, nonzero interactive parameters,
BIC is more capable of selecting truly nonzero parameters.

2.3 Proposed AFGU Algorithm for the SIE-GLM

Recall that Lasso and SGL can produce sparse solutions be-
cause the penalty terms are not differentiable at the point 0.
However, this feature, on the other hand, also brings compu-
tational difficulty in solving the minimization problem. The
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standard convex optimization used to obtain MLE, like Newton-
Raphson method, is not directly applicable to nonsmooth ob-
jective functions. There has been a tremendous amount of work
on regularized optimization from both statistics and computer
science perspective. Recently, the coordinate descent (CD) al-
gorithm, rediscovered by Friedman et al. (2007), has gained
lots of attention in regularized linear and logistic regression and
was shown to have computational superiority. Friedman, Hastie,
and Tibshirani (2010) and Simon et al. (2013) applied a simi-
lar idea and developed a block-wise coordinate descent (BCD)
algorithm for SGL.

However, we also find that while the BCD algorithm is very
fast and scales well in the linear regression model, it can be quite
costly in the GLM when the sample size, that is, the number of
bins in the spike train data, is very large. Based on our initial
simulation study, the BCD algorithm could not well handle the
large dataset whose size is similar to the real spike train data.

We develop an AFGU algorithm motivated from the previ-
ous work in Kim, Kim, and Kim (2008), Beck and Teboulle
(2009), and Wright (2012). Our proposed AFGU algorithm is
based on the full gradient of log-likelihood function and a spe-
cific shrinkage-thresholding operator depending on the penalty
function, combined with a Newton-based acceleration technique
over active parameters. Compared with BCD, the AFGU algo-
rithm could improve the performance in two ways.

First, we use the full gradient with respect to the parameter
vector θ̃ c instead of either the coordinate-wise or block-wise
gradient to avoid evaluating the gradient at each coordinate

one at a time. Starting from the current estimate θ̃
(old)
c , the full

gradient update is to obtain θ̃
(new)
c , which minimizes

ρ

2

∥∥∥∥̃θ c − θ̃
(old)
c

∥∥∥∥2

2

+
{
∇�c

(̃
θ

(old)
c

)}T (̃
θ c − θ̃

(old)
c

)
+ P(ηc ,αc )(θ c), (2.8)

where ∇�c (̃θ c) denotes the gradient vector of �c (̃θ c) with re-
spect to θ̃ c, and ρ is some small positive constant to control
the step size of the gradient update, which will be updated
adaptively in the algorithm. The minimization in (2.8) is sep-
arable between groups and the sub-problem for each group
can be analytically solved as in Simon et al. (2013).

Second, for each iteration, after the gradient update step in
(2.8), a Newton-type acceleration step is performed on the
reduced parameter space that only consists of the coordinates
with nonzero parameters at the current estimate. Let A be

the index set of the nonzero elements of θ̃
(new)
c . Denote by

∇ALc (̃θ c) and ∇2
ALc (̃θ c) the reduced gradient vector and Hes-

sian matrix of Lc (̃θ c) with respect to θ̃ c,A, the sub-vector of

θ̃ c with indices in A. The reduced-Newton update for θ̃
(new)
c is

then simply

θ̃
(new)
c,A −

{
∇2

ALc

(̃
θ

(new)
c

)}−1
∇ALc

(̃
θ

(new)
c

)
. (2.9)

To estimate θ̃ c, we can perform the updates in (2.8) and (2.9)
iteratively until convergence. The acceleration step in (2.9)
generally yields a vast performance improvement over the full
gradient update method in (2.8) and the BCD method, which
both use only the first-order information, and the improve-

ment is worth the cost of evaluating the reduced Hessian.
When the true parameters are sparse, the reduced Hessian
has a small dimension and its inverse can be easily com-
puted. Therefore, the AFGU algorithm is expected to run
faster and theoretically converges to the optimum point Q-
quadratically, which is better than either the simple gradient
or the coordinate-wise gradient method with a Q-linear con-
vergence rate (Wright 2012). Some fine adjustments are also
made to efficiently handle the sparse neural data, which have
a large portion of zero entries, and stabilize some matrix
operations.

As mentioned earlier, Simon et al. (2013) used the BCD algo-
rithm to solve the SGL problem for the linear and logistic regres-
sions. To estimate the parameters, they proposed an objective
function similar to (2.8) [see eq. (10) therein], and minimize it
iteratively in a group-wise way without the second acceleration
step. In our work, the idea of the BCD algorithm is applicable
to solve problem (2.5). Specifically, BCD minimizes (2.8) with
respect to the parameters in one group at a time and cyclically
iterates through the groups. Therefore, the AFGU algorithm
is computationally more efficient than BCD in the sense that
it updates all parameters by (2.8) simultaneously and uses the
reduced-Newton update in (2.9).

3. THEORETICAL PROPERTIES

In this section, we provide theoretical properties of our pro-
posed method. Here, we allow the total number C of neurons to
diverge slowly with the length T of the experiment, or equiv-
alently, with the number n of time bins when δ = T/n is fixed.

Let θ̃
∗
c = (θ∗

0 , θ∗
1 , . . . , θ∗

d )T be the vector of unknown true pa-
rameters, where d = P + (C − 1)Q + M .

Theorem 1 guarantees the existence of a consistent local min-
imizer of (2.5) and such minimizer is

√
n/C-consistent.

Theorem 1. Assume Conditions A1–A3 in the supplementary
appendix (available online only). If η

c

√
n = O(1) and C4/n =

o(1) as n → ∞, then there exists a local minimizer ̂̃θ c of (2.5)
such that

∥∥̂̃θ c − θ̃
∗
c‖2 = OP(

√
C/n).

We would like to point out that the proof of Theorem 1 uses
the penalized Bregman divergence (BD) framework in Zhang,
Jiang, and Chai (2010), but differs in two parts. First, we need to
treat the BD more carefully, since samples in Zhang, Jiang, and
Chai (2010) are iid, but samples in the spike train dataset, that is,
{Nc(τ

k
) : k = 1, . . . , n}, are not iid. We will use the martingale

version of central limit theorem (Theorem 7.4 in Durrett 2004)
to establish the desired result in the proof. Second, the penalty
terms used in our SIE-GLM are much more complex than the
L1 and those penalties in Zhang, Jiang, and Chai (2010) that
are imposed on individual variables. Details can be found in the
supplementary appendix available online.

4. SIMULATION STUDIES

To illustrate the application and performance of the pro-
posed regularized SIE-GLM, we consider three types of network
structures among neurons. The simple structure is addressed in
Section 4.1, the complex structure is illustrated in Section 4.2,
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whereas the network structure mimicking the real data is pre-
sented in Section 4.3.

We compare the performance of the proposed AFGU algo-
rithm for the SGL regularized method “SGL-P-Q” with two
existing L1 regularized methods “L1-short-P-Q” (Zhao et al.
2012) and “L1-P-Q” in different settings, with varying lengths
P and Q of the history windows. Note that “L1-short-P-Q” uses
a different parameterization as follows,

log{λc(τ
k
| N1:C(τ0:(k−1) ), X(τ

k
))} = γc;0 +

P∑
p=1

γc;p Nc(τ
k−p

)

+
∑

i∈{1,...,C}\c
γc,i;1

⎧⎨⎩
Q∑

q=1

Ni(τk−q
)

⎫⎬⎭+ X(τ
k
)T βc, (4.1)

where Q is chosen to be small and the interactive parameters
{γc,i;q : q = 1, . . . ,Q} in (2.4) are simplified to a single param-
eter γc,i;1, that is,

γ (c,i) = γc,i;1, where i ∈ {1, . . . , C} \ c. (4.2)

The corresponding parameter vector is

θ̃ c =(γc;0, {γc;p}p=1,...,P , {γc,i;1}i∈{1,...,C}\c, {βc,m}m=1,...,M

)T
,

and the imposed L1 penalty is

Pηc
(θ c)=η

c

⎛⎝ P∑
p=1

|γc;p|+
∑

i∈{1,...,C}\c
|γc,i;1|

⎞⎠+ η
c

∥∥βc

∥∥
1 . (4.3)

The “L1-P-Q” method uses the parameterization as in (2.1)
without simplification and imposes the L1 penalty as follows,

Pηc
(θ c) = η

c

⎧⎨⎩
P∑

p=1

|γc;p| +
∑

i∈{1,...,C}\c

⎛⎝ Q∑
q=1

|γc,i;q |
⎞⎠⎫⎬⎭

+η
c

∥∥βc

∥∥
1. (4.4)

4.1 Simple Network

We first simulate an ensemble of 10 neurons with the net-
work structure displayed in Figure S1 (in the online supple-
mentary materials). There are 10 connections in the constructed
network, of which seven connections have type-A parameters
(with thick red line in Figure S1, available online) and three
connections have type-B parameters (with thin blue line in Fig-
ure S1, available online). For each neuron, the baseline rate
was set at γc;0 = −3, which gives an average firing rate at
exp(−3)/0.1 = 0.5 Hz when the bin size is 0.1 sec. The lengths
of the history window of the autoregressive parameters and the
interactive parameters are set to be 10 bins in the generating
process. The autoregressive parameters are modeled by setting
the first few parameters γc;p to be very negative and then rise
to be slightly positive before going back to zero, in a way sim-
ilar to Truccolo et al. (2005); see the left panel of Figure S2
(available online). Two possible forms of interactive parameters
between neurons are also illustrated in the middle and right pan-
els of Figure S2 (available online). For illustrative simplicity, the
covariate term X(τ

k
)T βc is not included in the simulation.

We simulate a spike train with n =10,000 and n =15,000
bins, which correspond to T = 1000 sec and T = 1500 sec
when δ is fixed at 0.1 sec. The following five methods are com-
pared. The tuning parameters are selected by BIC given in (2.7)
for all methods. We also tried the SCAD penalty (Fan 1997),
which performs similar to the L1 regularized methods (and thus
is not shown here). In practice, to calculate the parameter esti-
mators, the group structure is used in the algorithm for methods
III–V below, but, for methods I and II, the structural information
is not incorporated.

method I. (L1-short-10-3) Use parameterization (4.1), L1

penalty (4.3), P = 10, and Q = 3;
method II. (L1-10-10) Use parameterization (2.1), L1 penalty

(4.4), P = 10, and Q = 10;
method III. (SGL-5-5) Use parameterization (2.1), SGL penalty

(2.6), P = 5, and Q = 5;
method IV. (SGL-10-10) Use parameterization (2.1),

SGL penalty (2.6), P = 10, and Q = 10;
method V. (SGL-15-15) Use parameterization (2.1),

SGL penalty (2.6), P = 15, and Q = 15.

While method IV uses the SGL penalty with the true length
of the history window, method III and V intend to investigate
the performance of the SGL regularized method with an inexact
length of the history window, since we do not know how long
the interaction between neurons would last in practice. For a
better comparison, we also carry out the simulation under the
setting that the interactive parameter is 25% stronger, that is,
the magnitude of parameters is 25% larger than those given
in Figure S2 (available online). We simulate spike trains with
different lengths to see how the result changes.

The results of all methods are summarized in Tables S1 and
S2 (in the online supplementary materials), which also include
comparisons with the method in Tandon and Ravikumar (2014)
(abbreviated as the TR method). “Correct-All” represents the
number of all connections correctly detected by methods where
there is indeed a connection between two neurons in the true net-
work. “detected-A” and “detected-B” are numbers of all detected
connections that embrace the true connections represented as
type-A and type-B, respectively. “Correct-NC” is the number
of pairs correctly identified as no connections where there is ac-
tually no connection. For each of the four metrics, a larger value
means a better performance. All values represent the average
across 100 simulation runs for each length of spike train and
strength of parameters.

From Tables S1 and S2 (available online), all methods can
successfully detect the sparse structure of the network, that is,
most truly zero-valued parameters are estimated to be zero, re-
flecting very good levels of specificity. However, the sensitivity
of detecting significant interactive parameters is not as good as
specificity. When the relative strength of interactive parameters
increases, we can see that the sensitivity becomes better. Such an
effect is reasonable, since stronger signals will result in bigger
changes to the conditional intensity, which makes the interaction
easier to be detected. When we increase the length of the spike
train to 15,000 bins, we see improved performance from all
methods, which would be expected since we simply have larger
dataset and more information to study the network structure of
the neuron population. Among all methods, the SGL regularized
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356 CHUNMING ZHANG ET AL.

method with the exact length of parameters’ history window has
the best performance in finding the interactions between neu-
rons. Interestingly, even when we misspecified the length of the
history window of interactive parameters in methods III and V,
they can still get the comparable results. All three SGL regular-
ized methods outperform the other two L1 regularized methods.

4.2 Complex Network

We simulate an ensemble of 60 neurons with the more com-
plex network structure illustrated in Figure S3 (available online)
and the corresponding connection matrix in Figure S4 (available
online). There, there are 60 connections, among which 30 have
type-A parameters and 30 have type-B parameters. The other
settings are similar to the previous simulation except that we
simulate with longer spike train (using n =20,000 and 25,000)
to handle the larger network.

The results of this simulation are summarized in Table S3
(available online). Besides those patterns that are already dis-
cussed in Section 4.1, we can clearly see from Figure S5 (avail-
able online) that the SGL regularized methods perform consid-
erably better than two L1 based methods. For example, method
IV is able to identify 12 more true connections on average and
much fewer false discoveries than method I when n =20,000
and the relative strength is 125%. The estimated network struc-
tures by the SGL regularized method are already very close to
the true simulation network in most runs.

For all methods, we also find that it is much harder to detect
the connections of type-B interactive parameters than those of
type-A interactive parameters. Since type-A parameter is more
excitatory (more positive interactive parameters in γ (c,i)) and
type-B parameter is more inhibitory (more negative interactive
parameters in γ (c,i)), it is likely that the initially low baseline
firing rate makes it difficult to detect inhibitory influences given
the relatively short length of simulated spike train. Figure S6
(in the online supplementary materials) illustrates the estimated
parameters of all type-A and type-B connections in a single
simulation run by L1-10-10 and SGL-10-10, in which thick
circles connected with dashed lines represent the true values
and each thin dashed line represents the estimated parameters
for one true connection with type-A or type-B. (Since L1-short
treats the whole interactive parameters as one single parameter,
it cannot provide the detailed structural form of parameters.)
We find that the L1-10-10 method usually can only detect the
high peak at the beginning, while the SGL-10-10 method can
provide more informative estimation of the parameters.

4.3 Simulated Network that Mimics the Real Data

To mimic the setting we encounter in the real experiments,
we will simulate the spike train data based on the estimated net-
works from the real data. First, obtain the estimated parameters
and network structure by applying method SGL-30-10 to the
neurophysiological data and denote by β̂c the estimate of βc.
For the simulation study (with P = 30 and Q = 10 in model
(2.1)), except for βc and γc,i;q , the true parameters as well as
the network structure are set as the estimated ones acquired
previously. The true value of βc is 0.3 sign(β̂c), and values of
γc,i;q are similar to those in Figure S2 (available online) but with

relative strength 125%, where type-A corresponds to the pos-
itive values in the estimated network and type-B corresponds
to the negative ones. The status indicators collected in the real
experiments (given in Table S6, available online) are included
in this section as the covariates.

For illustrative purpose, we only present the simulation re-
sults using the estimated networks (given in Figure S9, avail-
able online) from Experiments 1 and 4. The comparison among
regularized methods is given in Table S4 (available online),
which reveals that all methods perform similar in terms of cor-
rectly identifying more connections and SGL-30-10 well main-
tained low number of false detections. In contrast, the other two
L1 based methods both produce much more false alarms, which
is not desirable in the real applications.

5. APPLICATION TO NEUROPHYSIOLOGICAL DATA

5.1 T-Maze Task of Working Memory

We aim to estimate the functional connectivity structure of
neurons in the rat prelimbic region of the prefrontal cortex
(plPFC) using the proposed SIE-GLM. Neural data were ob-
tained from adult male Sprague-Dawley rats performing a T-
maze based delayed-alternation task of working memory (Dev-
ilbiss and Waterhouse 2004; Devilbiss, Page, and Waterhouse
2006; Devilbiss, Jenison, and Berridge 2012). In brief, animals
were trained to navigate down the runway of the T-maze and
choose one of two arms opposite to the one previously visited
for food rewards (chocolate chips 0.8 g) delivered by the ex-
perimenter’s hand. For each trial, the animal was placed in a
start-box for a predetermined time (a delay) and released with
the removal of a starting gate. The rat would navigate to the junc-
tion of the “T” and choose either the left or right arm, as seen
in Figure S7 (available online). On a correct choice, the animal
was rewarded and returned in the start-box, yielding a correct
sequence of “left, right, left, right, . . .”. On incorrect trials, the
animal was removed from the incorrectly chosen arm and re-
turned to the start-box without reward. Training continued in
the T-maze task until performance accuracy reached an average
of 90% on 10 trials (0 sec delay, one testing session per day). A
restricted feeding schedule (16 g–20 g of standard chow) main-
tained motivation with quantities of food titrated for each animal
to maintain motivation for each 40-trial session. Animals were
then surgically implanted with recording electrodes and returned
to ad lib feeding for the duration of recovery (7–10 days). Fol-
lowing recovery, restricted feeding was reinstated and training
continued until animal performance was stable across 40 trials
at 90%–100% accuracy with at least a 10 sec delay. Train-
ing/testing occurred at the same time each day. All procedures
were in accordance with NIH guidelines and were approved by
the University of Wisconsin Institutional Animal Care and Use
Committee.

5.2 Neural Data Discrimination and Recording

Online Discrimination and Recording. On the day of a record-
ing session, the animal was tethered to customized multichan-
nel electrophysiological hardware (Plexon Inc., Dallas, TX).
Neural activity was amplified, discriminated, time stamped,
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and recorded from putative single units of the plPFC. The
animal remained in its home cage, placed above the T-maze,
during this discrimination phase to allow the animal to habit-
uate to the tether and the recording arena. Template match-
ing algorithms were applied to neural activity to preliminar-
ily discriminate action potentials exhibiting a 3 : 1 signal-to-
noise ratio. Following discrimination of plPFC units, the an-
imals remained tethered to the recording hardware for the
remainder of the day. During each testing session, video-
tape recordings were made of the entire experimental ses-
sion with a video counter timer providing time stamps (reso-
lution = 0.0125 sec) synchronized to the multiunit recording
systems.

Offline Unit Analysis. After each experimental session,
preestablished offline criteria were used to verify that wave-
forms assigned to each online discriminated unit originated
from a single neuron. These previously described criteria were
based on unit waveform properties and spike train discharge
patterns including: (i) variability of peak waveform voltage,
(ii) variability of waveform slope(s) from peak to peak, (iii)
separability of clustering of scattergram points from the wave-
form’s first two principal components, and (iv) spike train au-
tocorrelogram. Neurons that did not meet these criteria were
excluded from the study. Neuronal waveform shape, discharge
pattern (interspike interval), and response properties were fur-
ther examined to verify that neurons were not recorded across
multiple recording sessions. Further analyses of data from neu-
rons recorded from multiple session days were limited to the
first recording session of that neuron. Finally, putative pyrami-
dal projection neurons were identified by the action potential
shape. Essentially, the peak-peak (P-P) duration of waveforms
from verified neurons were calculated. Neurons with P-P inter-
vals greater than 200 μs were classified as “wide spike” (WS-
type) neurons. Following each experimental session, the behav-
ioral intervals were visually identified by the experimenter from
time-stamped video recordings and manually entered into each
neural recording data file. These event-states were defined by
events occurring as the animal performs the T-maze task that
included

• placement of the rat into the start-box,
• removal of the start gate,
• rat reaching the branch point of the “T”,
• the rat entering one of two goal arms (choice),
• receipt of food reward, and
• removal of the rat to begin another trial.

Each trial was further classified as a correct or incorrect trial as
well as by chosen spatial goal (i.e., left vs. right arm). Dividing
the task into these behavioral intervals should not be interpreted
as representing individual and discrete cognitive functions. In-
stead, these are convenient delineations of different behaviors
and task events where different PFC-dependent processes may
be involved. Certainly, one can expect that some PFC-dependent
processes may be involved in adjacent behavioral intervals, and
like all delayed-response tasks, a clear temporal delineation of
onset and termination of different cognitive functions is difficult.

5.3 Neurophysiological Data Analysis

The dataset comprises eight experiments, each having 40 tri-
als (40 turns). Basic statistics are provided in Table S5 (available
online). Given the length of the spike trains and the relatively
low firing rate on average, we bin the spikes at 100 ms (0.1 sec),
which gives about 10,000–20,000 bins for each experiment. We
set P = 30, that is, the spike history may affect its own sponta-
neous firing rate up to 3 sec; and Q = 10, that is, the influence
of spikes from other neurons lasts up to 1 sec. Other choices of
P and Q are also considered, which give similar results. Finally,
we code the current state of the experimental animals into eight
indicator columns that are listed in Table S6 (available online).
Note that we only model the parameters associated with states
as linear terms, which only change the overall firing rate and do
not change the connectivity network structure. Then we applied
the SIE-GLM SGL regularized method to recorded neurophys-
iological data for each of the eight experiments.

For the autoregressive parameters γc;p, many of them are es-
timated to be zero. Most of the identified nonzero parameters
are positive, which indicate that there are some self-exciting
processes during a certain period of time. Figure S8 (in the on-
line supplementary materials) gives the estimated autoregressive
parameters for selected neurons (Nos. 14, 19, and 73) in Exper-
iment 4, which illustrate some typical forms of autoregressive
parameters. The refractory period of these neurons could not
be observed in this study, given that spike train binning was
0.1 sec, well beyond the absolute refractory period of approxi-
mately 0.003 sec. Note that some hilly forms are observed from
Neuron 14. This cyclic phenomenon is possibly caused by mu-
tually excitatory connections between these two neurons, rather
than solely by the individual self-exciting process. Such excita-
tory pair or clique can also be found in the network structure of
other experiments.

Table S7 (in the online supplementary materials) summa-
rizes the number of detected functional connections into two
categories: excitatory and inhibitory connections. The type of
detected connection from neuron i to neuron c is determined
by the sign of the sum of the estimated interactive parameters,
sign(1T γ̂ (c,i)), where 1 is a vector of ones. We also compare
the results with those from two L1 based methods discussed in
Section 4. We can see that among thousands of possible con-
nection pairs, only a few of them are selected by regularized
methods. The short-term L1 method detects more connections
than the other two methods, but based on the simulation results
we may doubt that it could report several false discoveries. The
long-term L1 method reports the smallest number of connec-
tions, and the SGL should provide a good balance and better
results as those in the simulation studies. For example, the esti-
mated networks from Experiments 1 and 4 are given in Figure
S9 (available online).

Also we provide the colored maps of the estimated interaction
matrix in Figure S10 (available online), whose color at the ith
row and the jth column represents the influence from neuron
j on neuron i. The Red color is for an excitatory effect, the
Blue color is for the inhibitory effect on the target neuron from
the trigger neuron, and the background Green color is for no
effect, where the exact color is determined by the strength of the
interaction, that is, ‖γ̂ (i,j )‖2. (Experiments 5 and 8 are omitted
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in Figure S8 (available online), since too few connections are
identified, which may be due to the low baseline firing rate and
short experimental time.)

The detected connections among neurons share some com-
mon characteristic across experiments. For example, there are
several excitatory pairs and cliques along the diagonal lines,
which suggests that the neurons in the self-exciting groups tend
to be physically close in the plPFC. The number of detected
inhibitory connections is fewer than that of the excitatory ones.
This is likely, because only 20% of cortical neurons are in-
hibitory interneurons. We need to note that the term “functional
connections” here refers to the statistical dependencies between
spike trains (neurons) and does not necessarily imply the exis-
tence of an anatomical connection between the corresponding
neurons (Okatan, Wilson, and Brown 2005); nevertheless results
we observed would be still useful to guide further research.

Table S8 (in the online supplementary materials) summarizes
the estimated parameters for eight state indicator covariates
described in Table S6 (available online). Among all parame-
ters, many are estimated to be insignificant, which means the
spike activities are generally similar across different states of
the T-maze trials. Among the eight state covariates, the “De-
lay”, “Run”, and “Decision” covariates have somewhat stronger
differences in the number of neurons with positive and negative
estimated parameters. For the “Delay” variable, there were fewer
neurons with positive estimated parameters than those with neg-
ative parameters in Experiments 3–6, likely reflecting that delay-
related neurons represent approximately 20% of PFC neurons.
On the other hand, the large number of neurons with positive
estimated parameters for “Run” and “Decision” variables sug-
gest that a large percentage of neurons coded decision-making
processes and the behavioral response.

6. DISCUSSION

When analyzing simultaneously recorded spike trains, it is
desirable to have some unified model to include several factors,
such as the autoregressive effect on each neuron, the functional
connections between pairs of neurons, as well as the experi-
mental state indicators. In this work, we use the regularized
SIE-GLM with Poisson-type neuronal responses to achieve such
a goal. The SIE-GLM framework is able to deal with different
types of factors that can affect the neuron activities; meanwhile,
the appropriate penalty can force parameters of those insignifi-
cant factors to be exactly zero so that the functional connections
between neurons can be inferred and separated from noises.

Here, our approach is based on the belief that among the huge
amount of all possible connections, only a very small portion of
them are really significant, so that a sparse network can be con-
structed using the estimated connections from the regularized
method. Comparing with previous works (e.g., Zhao et al. 2012),
we further propose the use of structured regularization, which
provides more flexibility to incorporate the structural prior in-
formation of the parameter space and improves the performance.
We give more rigorous theoretical results when considering the
dependence within the spike trains. From the simulation results,
the SGL regularized method can indeed improve the sensitivity
for detecting the true connections without sacrificing the speci-

ficity. The proposed AFGU algorithm is computationally very
efficient under the sparse network assumption.

We then applied the proposed method to real spike train
recordings from neurons in the prelimbic region of the prefrontal
cortex (PFC) of adult male rats. Some interesting findings about
the ensemble of neurons include the following.

• More excitatory connections are detected than inhibitory
connections; network connectivity is suggestive of hub-
based network architecture.

• Several distinct neural cliques could be identified that in-
cluded delay-related and behavioral response-related PFC-
related functions.

Although the statistically significant functional connection
does not infer synaptic connections, it provides useful informa-
tion to guide further research on the details of the interactions
within neuronal network. In summary, our proposed method
is applicable to a broad range of simultaneously recorded
spike trains and expected to perform better than existing
methods.

SUPPLEMENTARY MATERIALS

Online appendix: The appendix collects notations in Ap-
pendix A, detailed derivations of Theorem 1 in Appendix B,
and Figures S1–S10 and Tables S1– S8 in Appendix C. (Tech-
nometrics ZCGGDZ online appendix.pdf, pdf file)

Package for Matlab codes and real data: The Matlab script
files, a readme file, and real data used for simulation studies and
real data analysis in the article are given in the zipped file. (Tech-
nometrics ZCGGDZ online Matlab codes.zip, zipped file)

ACKNOWLEDGMENTS

The authors thank the editor, associate editor, and two anonymous referees
for insightful comments. C. Zhang’s research is supported by the NSF grants
DMS–1308872 and DMS–1521761, and Wisconsin Alumni Research Founda-
tion. Z. Zhang’s research is supported by the NSF grant DMS–1505367, and
Wisconsin Alumni Research Foundation.

[Received October 2014. Revised December 2015.]

REFERENCES

Beck, A., and Teboulle, M. (2009), “A Fast Iterative Shrinkage-Thresholding
Algorithm for Linear Inverse Problems,” SIAM Journal on Imaging Sciences,
2, 183–202. [354]

Berry, T., Hamilton, F., Peixoto, N., and Sauer, T. (2012), “Detecting Connec-
tivity Changes in Neuronal Networks,” Journal of Neuroscience Methods,
209, 388–397. [351]

Bickel, P. J., and Li, B. (2006), “Regularization in Statistics,” TEST, 15, 271–344.
[351]

Brillinger, D. R. (1992), “Nerve Cell Spike Train Data Analysis: A Progression
of Technique,” Journal of the American Statistical Association, 87, 260–271.
[351]

Brown, E. N., Kass, R. E., and Mitra, P. P. (2004), “Multiple Neural Spike
Train Data Analysis: State-of-the-Art and Future Challenges,” Nature Neu-
roscience, 7, 456–461. [351]

Chatterjee, S., Steinhaeuser, K., Banerjee, A., Chatterjee, S., and Ganguly, A.
(2012), “Sparse Group Lasso: Consistency and Climate Applications,” in
Proceedings of the SIAM International Conference on Data Mining, pp.
47–58. [351]

Chen, Z., Putrino, D. F., Ghosh, S., Barbieri, R., and Brown, E. N. (2011),
“Statistical Inference for Assessing Functional Connectivity of Neuronal
Ensembles With Sparse Spiking Data,” IEEE Transactions on Neural Sys-
tems and Rehabilitation Engineering, 19, 121–135. [351]

TECHNOMETRICS, AUGUST 2016, VOL. 58, NO. 3

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 1

3:
08

 1
1 

Ju
ly

 2
01

6 



NEURONAL FUNCTIONAL CONNECTIVITY 359

Cox, D. R., and Isham, V. (1980), Point Processes, Boca Raton, FL: Chapman
& Hall/CRC Press. [351]

Devilbiss, D. M., Jenison, R. L., and Berridge, C. W. (2012), “Stress-Induced
Impairment of a Working Memory Task: Role of Spiking Rate and Spiking
History Predicted Discharge,” PLoS Computational Biology, 8, e1002681.
[351,356]

Devilbiss, D. M., Page, M. E., and Waterhouse, B. D. (2006), “Locus Ceruleus
Regulates Sensory Encoding by Neurons and Networks in Waking Animals,”
Journal of Neuroscience, 26, 9860–9872. [356]

Devilbiss, D. M., and Waterhouse, B. D. (2004), “The Effects of Tonic Locus
Ceruleus Output on Sensory-Evoked Responses of Ventral Posterior Medial
Thalamic and Barrel Field Cortical Neurons in the Awake Rat,” Journal of
Neuroscience, 24, 10773–10785. [356]

Durrett, R. (2004), Probability: Theory and Examples, Belmont, CA: Duxbury
Press. [354]

Eldawlatly, S., Zhou, Y., Jin, R., and Oweiss, K. G. (2010), “On the Use
of Dynamic Bayesian Networks in Reconstructing Functional Neuronal
Networks From Spike Train Ensembles,” Neural Computation, 22, 158–
189. [351]

Fan, J. (1997), Comment on “Wavelets in Statistics: A Review” by A. An-
toniadis, Journal of the Italian Statistical Society, 6, 131–138. [351,355]

Friedman, J., Hastie, T., Hofling, H., and Tibshirani, R. (2007), “Pathwise Co-
ordinate Optimization,” Annals of Applied Statistics, 1, 302–332. [354]

Friedman, J., Hastie, T., and Tibshirani, R. (2010), “A Note on the Group Lasso
and a Sparse Group Lasso,” arXiv preprint, arXiv:1001.0736. [354]

Gerhard, F., Pipa, G., Lima, B., Neuenschwander, S., and Gerstner, W. (2011),
“Extraction of Network Topology From Multi-Electrode Recordings: Is
There a Small-World Effect?” Frontiers in Computational Neuroscience, 5,
4. [351]

Gerstein, G. L., and Perkel, D. H. (1969), “Simultaneously Recorded Trains
of Action Potentials: Analysis and Functional Interpretation,” Science, 164,
828–830. [350]

Kelly, R. C., Kass, R. E., Smith, M. A., and Lee, T. S. (2010), “Accounting
for Network Effects in Neuronal Responses Using L1 Regularized Point
Process Models,” Advances in Neural Information Processing Systems, 23,
1099–1107. [351,353]

Kim, J., Kim, Y., and Kim, Y. (2008), “A Gradient-Based Optimization Algo-
rithm for LASSO,” Journal of Computational and Graphical Statistics, 17,
994–1009. [354]

Kim, S., Putrino, D., Ghosh, S., and Brown, E. N. (2011), “A Granger Causality
Measure for Point Process Models of Ensemble Neural Spiking Activity,”
PLoS Computational Biology, 7, e1001110. [351]

Liu, J., and Ye, J. (2010), “Moreau-Yosida Regularization for Grouped Tree
Structure Learning,” Advances in Neural Information Processing Systems,
23, 1459–1467. [351,353]

McCullagh, P., and Nelder, J. A. (1989), Generalized Linear Models, London:
Chapman & Hall. [351]

Meier, L., Van De Geer, S., and Buhlmann, P. (2008), “The Group Lasso for
Logistic Regression,” Journal of the Royal Statistical Society, Series B, 70,
53–71. [351]

Mishchenko, Y., Vogelstein, J. T., and Paninski, L. (2011), “A Bayesian Ap-
proach for Inferring Neuronal Connectivity From Calcium Fluorescent
Imaging Data,” Annals of Applied Statistics, 5, 1229–1261. [351]

Okatan, M., Wilson, M. A., and Brown, E. N. (2005), “Analyzing Functional
Connectivity Using a Network Likelihood Model of Ensemble Neural Spik-
ing Activity,” Neural Computation, 17, 1927–1961. [351,358]

Perkel, D. H., Gerstein, G. L., and Moore, G. P. (1967), “Neuronal Spike Trains
and Stochastic Point Processes: II. Simultaneous Spike Trains,” Biophysical
Journal, 7, 419–440. [350]

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E.
J., and Simoncelli, E. P. (2008), “Spatio-Temporal Correlations and Visual
Signalling in a Complete Neuronal Population,” Nature, 454, 995–999. [351]

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2013), “A Sparse-Group
Lasso,” Journal of Computational and Graphical Statistics, 22, 231–245.
[351,353,354]

Stevenson, I. H., Rebesco, J. M., Hatsopoulos, N. G., Haga, Z., Miller, L. E.,
and Kording, K. P. (2009), “Bayesian Inference of Functional Connectivity
and Network Structure From Spikes,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 17, 203–213. [351]

Tandon, R., and Ravikumar, P. (2014), “Learning Graphs With a Few Hubs,”
in Proceedings of the 31st International Conference on Machine Learning
(ICML), pp. 602–610. [355]

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society, Series B, 58, 267–288. [351,353]

Truccolo, W. (2010), “Stochastic Models for Multivariate Neural Point Pro-
cesses: Collective Dynamics and Neural Decoding,” in Analysis of Parallel
Spike Trains, eds. S. Grün and S. Rotter, New York: Springer, pp. 321–341.
[351]

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N.
(2005), “A Point Process Framework for Relating Neural Spiking Activity to
Spiking History, Neural Ensemble, and Extrinsic Covariate Effects,” Journal
of Neurophysiology, 93, 1074–1089. [351,355]

Wright, S. J. (2012), “Accelerated Block-Coordinate Relaxation for Regularized
Optimization,” SIAM Journal on Optimization, 22, 159–186. [354]

Yuan, M., and Lin, Y. (2006), “Model Selection and Estimation in Regression
With Grouped Variables,” Journal of the Royal Statistical Society, Series B,
68, 49–67. [351]

Zhang, C. M., Jiang, Y., and Chai, Y. (2010), “Penalized Bregman Diver-
gence for Large-Dimensional Regression and Classification,” Biometrika,
97, 551–566. [354]

Zhao, M., Batista, A., Cunningham, J. P., Chestek, C., Rivera-Alvidrez, Z.,
Kalmar, R., Ryu, S., Shenoy, K., and Iyengar, S. (2012), “An L1-Regularized
Logistic Model for Detecting Short-Term Neuronal Interactions,” Journal
of Computational Neuroscience, 32, 479–497. [351,353,355,358]

TECHNOMETRICS, AUGUST 2016, VOL. 58, NO. 3

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

is
co

ns
in

 -
 M

ad
is

on
] 

at
 1

3:
08

 1
1 

Ju
ly

 2
01

6 



Online Supplement to “Statistical Learning of Neuronal

Functional Connectivity”

Appendix A: List of notations and symbols

List of notations and symbols.

• C: total number of neurons in the ensemble.

• T : total length of the experiment trial.

• n: total number of time bins. We assume n → ∞.

• pg: the length of the gth group for the parameters.

• δ = T/n: the length of each time bin.

• τ
k
= (tk−1, tk]: the start and end time points of the kth time bin.

• Nc(τk): count the number of spikes fired by neuron c during τ
k
.

• τ
0:k

= (0, tk]: the interval from the start of the experiment up to the time point tk.

• N1:C(τ0:k) = {Nc(τℓ) : c = 1, . . . , C; ℓ = 1, . . . , k} if k ≥ 1 or empty if k = 0: the
spiking history of all neurons up to the time point tk.

• λc(τk | ·) = E{Nc(τk) | ·}: the conditional intensity function of neuron c during τ
k
.

• exp(γc;0): the baseline firing rate of neuron c.

• γ(c) = (γc;1, . . . , γc;P )
T : the vector of autoregressive parameters of neuron c at different

lags.

• γ(c,i): the vector of interactive parameters representing the influence of neuron i onto
neuron c at different lags. For parametrization (2.1), γ(c,i) = (γc,i;1, . . . , γc,i;Q)

T as in
(2.4); for parametrization (4.1), γ(c,i) = γc,i;1 as in (4.2).

• X(τ
k
): a M dimensional covariate vector measured during τ

k
.

• βc = (βc,1, . . . , βc,M)T : the parameters that correspond to the covariates for neuron
c.

• P : the history windows of autoregressive parameters.

• Q: the history windows of interactive parameters.

• M : the length of covariate vector X(τ
k
).

• θ̃c: the vector form of all parameters for neuron c, i.e. θ̃c = (γc;0, θ
T
c )

T .

• θc: the vector form of all parameters for neuron c excluding the intercept γc;0.
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• θ̃
∗

c : the true unknown parameter vector.

• d = P + (C − 1)Q+M : the total number of covariates

• ℓc(θ̃c): negative log-likelihood of neuron c.

• P(ηc ,αc)(θc): structured penalty of θc.

• Lc(θ̃c): negative log-likelihood of neuron c with the penalty.

• (α
c
, η

c
): tuning parameters of the penalty.

• ‖ · ‖2: the L2 norm.

• ‖ · ‖1: the L1 norm.

Additional notations and symbols. Furthermore, we define by Yc,k and X̃c,k the

response scalar and covariate vector of (2.5) at the kth time bin, k = 1, . . . , n. Let

X̃c = (X̃c,1, . . . , X̃c,n)
T denote the whole design matrix. Adopting the BD framework in

Zhang et al. (2010), the problem of (2.5) is equivalent to the penalized BD estimation with

link function F (·) = log(·) and

Q(Y, µ) = µ− Y log(µ)− Y + Y log(Y )

generated by q(µ) = µ − a − µ{log(µ)− log(a)} where a is a finite positive constant such

that q(µ) is well-defined.

Appendix B: Proofs of Results in Section 3

Conditions. We have the following conditions in which B1 and B2 are sufficiently large
constants. Those are not the weakest possible, but serve to facilitate the technical deriva-
tions.

A1. The parameter space Θ of θ̃c is compact in Rd+1 and ‖θ̃∗

c‖1 < B1;

A2. For all bins, Nc(τk) are uniformly bounded by B2;

A3. The minimum eigenvalue of Σc = n−1X̃cX̃ T
c are uniformly bounded away from 0, i.e.

λmin(Σc) > δ for some positive constant δ > 0;

Condition A1 restrict the magnitude of parameters from being too large or too small re-

spectively. Condition A2 reflects the biological limitation to the number of spikes within a

2



short time interval. The boundedness assumption of the response variable would also facil-

itate the technical derivations. Condition A3 is commonly used for the covariance matrix

of predictor variables and it ensures the convexity of likelihood function and identifiability

of the problem.

Proof of Theorem 1. Since d = P +(C−1)Q+M and P , Q, M are all fixed constants,

d and C have the same diverging rate. Let rn =
√

d/n and ũ = (u0, u1, . . . , ud)
T ∈ Rd+1.

Similar to Zhang et al. (2010), it suffices to show that for any given ǫ > 0, there is a large

constant Uǫ such that, for large n,

P
{

inf
‖ũ‖2=Uǫ

Lc(θ̃
∗

c + rnũ) > Lc(θ̃
∗

c)
}
≥ 1− ǫ. (A.1)

Now we separate the loss function and penalty term by

Lc(θ̃
∗

c + rnũ)− Lc(θ̃
∗

c)

= {ℓc(θ̃
∗

c + rnũ)− ℓc(θ̃
∗

c)}+ {P(ηc ,αc)(θ
∗
c + rnũ)−P(ηc ,αc)(θ

∗
c)}

≡ I1 + I2.

Further by Taylor expansion of I1,

I1 =
rn
n

n∑

k=1

{exp(X̃T
c,kθ̃

∗

c)− Yc,k}X̃T
c,kũ+

r2n
2n

n∑

k=1

exp(X̃T
c,kθ̃

∗

c)(X̃
T
c,kũ)

2

+
r3n
6n

n∑

k=1

exp(X̃T
c,kθ̃

′

c)(X̃
T
c,kũ)

3 = I1,1 + I1,2 + I1,3

where θ̃
′

c is located between θ̃
∗

c and θ̃
∗

c + rnũ. Then those terms can be bounded as

|I1,1| ≤
∥∥∥∥
rn
n

n∑

k=1

{exp(X̃T
c,kθ̃

∗

c)− Yc,k}X̃c,k

∥∥∥∥
2

‖ũ‖2 = OP(rn
√

d/n)Uǫ; (A.2)

I1,2 = 2−1r2nũ
T (X T

c ΩXc/n)ũ ≥ c1r
2
nU

2
ǫ ; (A.3)

|I1,3| ≤ OP(r
3
nd

3/2)U3
ǫ , (A.4)

where Ω = diag{exp(X̃T
c,1θ̃

∗

c), . . . , exp(X̃
T
c,nθ̃

∗

c)} and c1 is some positive constant. Here the

data are not i.i.d., so we need to apply the martingale version of central limit theorem

(Theorem 7.4 in Durrett, 2004) to obtain the rate of I1,1 in (A.2), in which each element

of
∑n

k=1{exp(X̃T
c,kθ̃

∗

c)−Yc,k}X̃T
c,k is a martingale with bounded increments. (A.3) and (A.4)

follow conditions A1-A3.
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For the penalty term,

I2 ≥ −(1 − α
c
)η

c

{√
P‖rnuγ(c)‖2 +

√
Q

∑

i∈{1,...,C}\c

‖rnuγ(c,i)‖2
}

−α
c
η
c

{
‖rnuγ(c)‖1 +

∑

i∈{1,...,C}\c

‖rnuγ(c,i)‖1
}
− η

c
‖rnuβc

‖1

where uγ(c), uγ(c,i) and uβc
are components of ũ corresponding to γ(c), γ(c,i) and uβc

re-

spectively. Then,

|I2| ≤ η
c
rn

{√
P‖uγ(c)‖2 +

√
Q

∑

i∈{1,...,C}\c

‖uγ(c,i)‖2 +
√
M‖uβc

‖2
}

≤ η
c
rn
√
max(P,Q,M)

√
C + 1‖ũ‖2 = O(η

c
rn
√
d)Uǫ.

Since d4/n = O(C4/n) = o(1), we can choose some large Cǫ such that I1,1, I1,3 and I2 are

all dominated by I1,2, which is positive. This implies (A.1). �
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Appendix C: Figures and Tables in the paper

Section 4.1. Figures 1–2; Tables 1–2.
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Figure 1: (Simulation of simple network) A simulated network with 10 neurons. The

line types of arrows indicate two different types of interactive parameters in Figure 2, where
the thick Red line represents type-A parameter (more excitatory) and the thin Blue line

represents type-B parameter (more inhibitory).
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Figure 2: (Simulation of simple network) True values (using ◦ connected with dashed

lines) of parameters for the simulation. The horizontal dotted line indicates 0. Left

panel: autoregressive parameters {γc;p}Pp=1; middle panel: interactive type-A parameters

{γc,i;q}Qq=1; right panel: interactive type-B parameters {γc,i;q}Qq=1.
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Table 1: (Simulation of simple network) Comparison of estimated network by regu-

larized methods with varying strength of parameters and length of spike train. Results are

averaged over 100 replications, with standard deviations indicated in parentheses.

Length Relative Method Correct-All detected-A detected-B Correct-NC

(bins) Strength

10000 100% L1-short-10-3 1.58 (1.4) 1.34 (1.1) 0.24 (0.5) 79.11 (1.2)

L1-10-10 0.61 (0.8) 0.59 (0.8) 0.02 (0.1) 79.72 (0.7)

TR-5-5 3.01 (1.4) 2.47 (1.2) 0.54 (0.6) 76.72 (2.1)

TR-10-10 1.73 (1.1) 1.54 (1.1) 0.19 (0.4) 77.90 (1.5)

SGL-5-5 4.98 (1.6) 4.21 (1.4) 0.77 (0.7) 75.64 (3.1)

SGL-10-10 4.73 (1.9) 3.57 (1.5) 1.16 (0.8) 67.02 (8.2)

SGL-15-15 4.62 (1.8) 3.49 (1.4) 1.13 (0.8) 58.95 (9.7)

True network 10.00 (0.0) 7.00 (0.0) 3.00 (0.0) 80.00 (0.0)

125% L1-short-10-3 4.02 (1.6) 3.40 (1.3) 0.62 (0.7) 78.23 (1.7)

L1-10-10 1.70 (1.4) 1.66 (1.3) 0.04 (0.2) 79.68 (0.5)

TR-5-5 4.46 (1.4) 3.79 (1.2) 0.67 (0.8) 77.30 (1.8)

TR-10-10 2.78 (1.5) 2.58 (1.3) 0.20 (0.4) 78.00 (1.7)

SGL-5-5 7.54 (1.4) 6.13 (0.9) 1.41 (1.0) 73.43 (4.0)

SGL-10-10 7.54 (1.5) 5.69 (1.1) 1.85 (0.7) 62.93 (8.2)

SGL-15-15 7.23 (1.6) 5.39 (1.1) 1.84 (0.8) 50.74 (11.1)

True network 10.00 (0.0) 7.00 (0.0) 3.00 (0.0) 80.00 (0.0)

6



Table 2: The caption is identical to that for Table 1, except that 15000 bins are used.

Length Relative Method Correct-All detected-A detected-B Correct-NC

(bins) Strength

15000 100% L1-short-10-3 6.27 (1.7) 4.86 (1.3) 1.41 (0.8) 74.42 (3.3)

L1-10-10 2.70 (1.7) 2.42 (1.4) 0.28 (0.5) 78.84 (1.2)

TR-5-5 3.72 (1.6) 3.22 (1.4) 0.50 (0.6) 77.31 (2.2)

TR-10-10 2.37 (1.2) 2.08 (1.1) 0.29 (0.5) 78.59 (1.2)

SGL-5-5 7.33 (1.5) 5.70 (1.0) 1.63 (0.9) 74.62 (3.2)

SGL-10-10 7.72 (1.6) 5.73 (1.1) 1.99 (0.9) 64.49 (7.4)

SGL-15-15 7.42 (1.6) 5.46 (1.1) 1.96 (0.8) 51.80 (9.4)

True network 10.00 (0.0) 7.00 (0.0) 3.00 (0.0) 80.00 (0.0)

125% L1-short-10-3 8.26 (1.4) 6.25 (0.8) 2.01 (0.9) 73.61 (2.9)

L1-10-10 4.89 (1.7) 4.37 (1.4) 0.52 (0.6) 78.27 (1.5)

TR-5-5 6.05 (1.7) 4.93 (1.4) 1.12 (0.8) 77.22 (2.0)

TR-10-10 4.10 (1.4) 3.70 (1.3) 0.40 (0.6) 78.37 (1.6)

SGL-5-5 9.13 (0.9) 6.82 (0.4) 2.31 (0.8) 72.26 (4.0)

SGL-10-10 9.39 (0.9) 6.79 (0.4) 2.60 (0.6) 61.96 (8.5)

SGL-15-15 9.24 (0.8) 6.65 (0.6) 2.59 (0.5) 47.15 (10.2)

True network 10.00 (0.0) 7.00 (0.0) 3.00 (0.0) 80.00 (0.0)
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Section 4.2. Figures 3, 4, 5 and 6; Table 3.
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Figure 3: (Simulation of complex network) A simulated network with 60 neurons.

The line types of arrows indicate two different types of interactive parameters in Figure

2, where the thick Red line represents type-A parameter and the thin Blue line represents

type-B parameter.
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Figure 4: (Simulation of complex network) The connectivity matrix of the simu-

lated network. The color of the cell at the ith row and the jth column distinguishes how

neuron j’s spiking history would affect the firing rate of neuron i. The background Green

color means no connection; the Red color represents type-A parameter and the Blue color

represents type-B parameter.

8



0

10

20

30

L1
−s

ho
rt−

10
−3

L1
−1

0−
10

SG
L−

5−
5

SG
L−

10
−1

0

SG
L−

15
−1

5

# 
of

 d
et

ec
te

d−
A 

co
nn

ec
tio

ns

interactive type−A parameters

0

10

20

30

L1
−s

ho
rt−

10
−3

L1
−1

0−
10

SG
L−

5−
5

SG
L−

10
−1

0

SG
L−

15
−1

5

# 
of

 d
et

ec
te

d−
B 

co
nn

ec
tio

ns

interactive type−B parameters

20

40

60

80

L1
−s

ho
rt−

10
−3

L1
−1

0−
10

SG
L−

5−
5

SG
L−

10
−1

0

SG
L−

15
−1

5

# 
of

 fa
lse

 d
et

ec
tio

ns

Figure 5: (Simulation of complex network) Boxplots comparing 5 methods. Left

panel: number of “detected-A” connections; middle panel: number of “detected-B” connec-

tions; right panel: number of false detections. Here n = 25000 and the relative strength is

125%.
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Figure 6: (Simulation of complex network) The estimated parameters of all type-A
and type-B connections in a single simulation run. Left panels: plots of type-A parameters;

right panels: plots of type-B parameters. Top panels: plots of the estimates obtained by

L1-10-10; bottom panels: plots of the estimates obtained by SGL-10-10. Thick ◦ connected

with dashed lines: true values; thin dashed lines: estimated values. Here n = 25000 and

the relative strength is 125%.
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Table 3: (Simulation of complex network) Comparison of estimated network by

regularized methods with varying strength of parameters and length of spike train. Results

are averaged over 100 replications, with standard deviations indicated in parentheses.

Length Relative Method Correct-All detected-A detected-B Correct-NC

(bins) Strength

20000 100% L1-short-10-3 23.65 (3.4) 17.19 (2.7) 6.46 (2.0) 3457.07 (7.7)

L1-10-10 15.94 (3.2) 13.04 (2.7) 2.90 (1.6) 3464.85 (5.0)

SGL-5-5 30.42 (3.2) 21.84 (2.3) 8.58 (2.5) 3460.30 (4.7)

SGL-10-10 31.78 (3.9) 19.57 (2.5) 12.21 (3.0) 3466.68 (3.5)

SGL-15-15 21.97 (3.7) 14.78 (2.6) 7.19 (2.5) 3473.01 (2.7)

True network 60.00 (0.0) 30.00 (0.0) 30.00 (0.0) 3480.00 (0.0)

125% L1-short-10-3 35.23 (3.5) 24.77 (2.0) 10.46 (2.5) 3450.98 (7.8)

L1-10-10 26.86 (3.5) 21.60 (2.6) 5.26 (2.0) 3463.54 (4.4)

SGL-5-5 46.76 (3.0) 28.83 (1.1) 17.93 (2.7) 3454.38 (5.3)

SGL-10-10 50.63 (3.0) 28.15 (1.3) 22.48 (2.6) 3459.48 (4.7)

SGL-15-15 42.37 (3.4) 25.73 (1.6) 16.64 (2.8) 3466.64 (3.7)

True network 60.00 (0.0) 30.00 (0.0) 30.00 (0.0) 3480.00 (0.0)

25000 100% L1-short-10-3 41.70 (3.2) 25.92 (1.8) 15.78 (2.6) 3426.09 (9.9)

L1-10-10 27.75 (3.6) 19.77 (2.5) 7.98 (2.3) 3454.48 (6.4)

SGL-5-5 39.92 (3.0) 25.83 (1.9) 14.09 (2.6) 3456.61 (5.0)

SGL-10-10 42.18 (3.8) 24.27 (2.3) 17.91 (2.9) 3463.31 (3.8)

SGL-15-15 33.19 (3.7) 20.60 (2.8) 12.59 (2.5) 3469.86 (3.3)

True network 60.00 (0.0) 30.00 (0.0) 30.00 (0.0) 3480.00 (0.0)

125% L1-short-10-3 50.69 (2.5) 29.35 (0.8) 21.34 (2.4) 3418.31 (9.5)

L1-10-10 40.47 (3.3) 27.41 (1.6) 13.06 (2.7) 3453.88 (6.1)

SGL-5-5 53.59 (2.4) 29.79 (0.5) 23.80 (2.3) 3450.05 (6.0)

SGL-10-10 56.97 (1.8) 29.69 (0.6) 27.28 (1.5) 3456.29 (4.9)

SGL-15-15 52.68 (2.4) 28.90 (0.9) 23.78 (2.3) 3463.03 (3.5)

True network 60.00 (0.0) 30.00 (0.0) 30.00 (0.0) 3480.00 (0.0)
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Section 4.3. Table 4.

Table 4: (Simulation of real network) Comparison of estimated network by regularized

methods for the simulated network that mimics the real data, using P = 30 and Q = 10
in (2.1). Results are averaged over 100 replications, with standard deviations indicated in

parentheses.

Exper. 1 (with 73 neurons) Exper. 4 (with 77 neurons)

Method Correct-All Correct-NC Correct-All Correct-NC

L1-short-30-3 47.62 (1.5) 5048.70 (7.8) 53.95 (1.4) 5681.65 (7.9)

L1-30-10 45.47 (1.4) 5045.85 (7.7) 50.55 (1.4) 5689.68 (6.3)

SGL-30-10 48.44 (1.3) 5164.92 (5.5) 51.21 (1.0) 5745.54 (4.7)

True network 62.00 (0.0) 5194.00 (0.0) 71.00 (0.0) 5781.00 (0.0)
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Section 5. Figures 7, 8, 9 and 10; Tables 5, 6, 7 and 8.

Figure 7: (Neurophysiological data) T-maze task: for each trial, the animal was

placed in a start-box for a pre-determined time (a delay) and released with the removal of

a starting gate. The rat would move to the junction of the “T” and choose the left or right

arm. On a correct choice, the animal was rewarded and returned in the start-box. This

figure is adapted from Devilbiss et al. (2012).
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Figure 8: (Neurophysiological data) Estimates (using ◦ connected with dashed lines)
of gain, i.e. exp(γc;p), associated with autoregressive parameters by the SGL regularized

method for selected neurons in Experiment 4.

12



6

9

56

60

61

62

63

64

69

70

71

72

73

8

18

24

26

31

38

39

43

52

55

57

58

59

6566

68

8

9

10

11

13

16

19

21

24

45

46

52

55

57

65

6872

73 2

14
18

20

49

56

60

63

69

74

76

Figure 9: (Neurophysiological data) The estimated network structures by the SGL
regularized method. The thick Red color presents the excitatory connection and thin Blue

color presents the inhibitory connection. Left panel: Experiment 1; right panel: Experiment

4.

Table 5: (Neurophysiological data) Summary statistics of the T-maze task dataset.

Total number of neurons

No. Subject Total length (sec) WS-type NS-type Total Average firing rate (Hz)

1 TM19 1449.2 53 4 73 0.567

2 TM19 1150.8 60 5 83 0.408

3 TM44 2243.7 44 6 59 0.772

4 TM44 2150.3 62 3 77 0.364

5 TM44 2191.1 57 3 71 0.192

6 TM44 2011.4 53 3 63 0.241

7 TM57 930.3 30 8 39 0.375

8 TM58 765.2 23 0 26 0.342
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Figure 10: (Neurophysiological data) The estimated network matrices by the SGL
regularized method. The Red color indicates the excitatory connection between the pair

and the Blue color indicates the inhibitory connection, while the Green color means no

functional connection. The exact color is determined by the strength of the connection.

There is no estimate of interactive parameters for the blocks on the black diagonal line.
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Table 6: (Neurophysiological data) Description of the covariates used in the analysis.

Column # Name Description

1 Delay Stay in the resting area until the gate is released.

2 Run Run through the tunnel from the gate to the branch point.

3 Decision At the branch area of the T-maze and make a turn.

4 Choice Run to the left or right end.

5 Reward Eat reward in the correct trial.

6 Pick-up Be picked up and put back to the resting area.

7 Left-trial Whether made the left turn in the trial.

8 Correct-trial Whether made the correct choice in the trial.

(different from the previous one.)

Table 7: (Neurophysiological data) Summary of estimated networks by regularized

methods.

L1-short-30-3 L1-30-10 SGL-30-10

Experiment Possible pairs Excit. Inhib. Excit. Inhib. Excit. Inhib.

1 5256 48 40 17 14 43 19

2 6806 20 24 14 9 15 18

3 3422 116 53 49 13 63 16

4 5852 99 54 21 12 52 19

5 4970 21 9 3 0 9 4

6 3906 28 7 16 2 14 4

7 1482 55 6 13 2 23 0

8 650 0 0 0 0 0 0
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Table 8: (Neurophysiological data) Summary of estimated parameters by the SGL
regularized method for 8 state indicator covariates described in Table 6.

Number of neurons with positive and negative estimated parameters

Experiment Delay Run Decision Choice Reward Pick-up Left Correct

+ − + − + − + − + − + − + − + −
1 6 5 2 0 11 3 0 0 0 0 3 4 4 3 2 6

2 9 7 6 1 1 1 2 0 2 1 3 2 0 2 0 1

3 8 29 6 1 6 3 2 0 0 1 7 0 2 8 1 3

4 8 26 7 0 6 0 7 0 0 0 5 7 8 3 6 3

5 5 13 2 1 1 0 2 0 0 2 6 1 1 3 1 3

6 11 14 2 0 2 0 2 0 4 1 3 4 1 4 0 1

7 10 7 16 1 6 0 1 1 1 6 1 10 4 6 0 6

8 0 0 0 0 0 0 0 0 1 0 4 0 1 0 1 0
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