ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

High-dimensional regression: How to pick the objective function in high-dimension

Derek Bean

UC Berkeley

March 11, 2013

Joint work with Noureddine El Karoui, Peter Bickel, Chingwhay Lim, and Bin Yu

Notation.

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

Standard linear model. Observe *n* pairs (X_i, Y_i) :

$$Y_i = X_i^T \beta_0 + \epsilon_i.$$

• Errors
$$\epsilon_i \stackrel{iid}{\sim} f_\epsilon$$

• dim $(X_i) = dim(\beta_0) = p$

M-estimates.

$$\widehat{\beta}_{\rho} = \operatorname*{argmin}_{\beta} \sum_{i} \rho(Y_{i} - X_{i}^{T}\beta)$$

• ρ - "objective function", "loss function"

Classical theory: low-dimension. Relles (1968); Huber (1973); Portnoy (1985)

ADVANCES IN HIGH-DIMENSIONAI LINEAR REGRESSION

Behavior of
$$\widehat{eta} - eta_0$$
:

 $v \in \mathbb{R}^p$ set of p weights

• $v^T \hat{\beta}$ unbiased for $v^T \beta_0$, asym. normal Variance:

$$\left[v^{\mathsf{T}}\left(X^{\mathsf{T}}X\right)^{-1}v\right]\times r^{2}(\rho,f_{\epsilon})$$

• Key: p grows slowly with $n \Rightarrow p/n \approx 0$. Given f_{ϵ} , compute $r^2 \Rightarrow$ possible to compare estimates Best estimate: minimize r^2 over ρ .

Best objective function in low-dimension.

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

Given
$$f_{\epsilon}$$
, $r^2(\rho, f_{\epsilon})$ minimized by:

$$\rho_{opt} = -\log f_{\epsilon}$$

Well known: maximum likelihood estimate (MLE).

Example MLEs:

- **1** Normal errors: **Least squares** (LS): $\rho_{opt}(x) = x^2$.
- 2 Double exponential errors: Least absolute deviations (LAD): $\rho_{opt}(x) = |x|$. (Robust)

Surprising simulations!

ADVANCES IN HIGH-DIMENSIONAI LINEAR REGRESSION

1000 samples, 1000 simulations.

M-estimates in high-dimension. PNAS: El Karoui et. al. 2012, to appear

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

Assume:

■ $p/n \rightarrow \kappa \in (0,1)$ ■ $X_i \stackrel{iid}{\sim} \mathcal{N}(0, I_p)$

Then: for set of p weights v, $||v||_2 = 1$: 1 $v^T \hat{\beta}$ unbiased for $v^T \beta_0$, asym. normal. 2 Variance:

$$p^{-1} \times r^2(\rho, f_{\epsilon}; \kappa)$$

Can characterize r^2 (complicated!)

Best estimate: given f_{ϵ} AND κ , minimize r^2 across ρ

Optimal M-estimates in high-dimension PNAS: Bean et. al. 2012, to appear

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

Key results: given error density f_{ϵ} ,

1 For each dimension $p/n \approx \kappa$ there exists $r_{opt}(\kappa)$ such that $r(\rho, f_{\epsilon}; \kappa) \geq r_{opt}(\kappa)$ for all ρ

• Can characterize $r_{opt}(\kappa)$

2 When f_{ϵ} is *log-concave*, r_{opt} is achieved by an "optimal loss function" ρ_{opt} .

Details of ρ_{opt} .

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Let
$$f_{r,\epsilon} = \mathcal{N}(0, r^2) * f_{\epsilon}$$
.

Write $r_{opt} = r_{opt}(\kappa)$. Optimal loss:

$$\rho_{opt}(x) = \left(P_2 + r_{opt}^2 \log f_{r_{opt},\epsilon}\right)^*(x) - P_2(x),$$

 \Rightarrow optimal objective **adaptive** to dimension!

•
$$P_2(x) = x^2/2$$

■ g^{*} is the *conjugate dual* of generic convex g.

Optimal loss vs. LAD, D.E. errors

▶ ≣ ৩৭৫ 9/12

Optimal loss vs. LS, D.E. errors

Derek Bean

≣ • २० 10/12

Example: behavior of optimal loss function

^{11 / 12}

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

Low-dimensional intuition upended in high-dimensional setting

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

- Low-dimensional intuition upended in high-dimensional setting
- 2 Can get precise distributional behavior in high-dimensions
 Random vs. fixed design...

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

- Low-dimensional intuition upended in high-dimensional setting
- 2 Can get precise distributional behavior in high-dimensionsRandom vs. fixed design...
- **3** Can optimize the loss in high-dimensions
 - A new family of dimension-adaptive loss functions

ADVANCES IN HIGH-DIMENSIONAL LINEAR REGRESSION

Derek Bean

- Low-dimensional intuition upended in high-dimensional setting
- 2 Can get precise distributional behavior in high-dimensionsRandom vs. fixed design...
- **3** Can optimize the loss in high-dimensions
 - A new family of dimension-adaptive loss functions
- 4 (Not presented) Extensions to penalized estimates
 - E.g. LASSO, ridge-type estimates