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Notation.

Standard linear model. Observe n pairs (Xi ,Yi ):

Yi = XT
i β0 + εi .

Errors εi
iid∼ fε

dim(Xi ) = dim(β0) = p

M-estimates.

β̂ρ = argmin
β

∑
i

ρ(Yi − XT
i β)

ρ - “objective function”, “loss function”
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Classical theory: low-dimension.
Relles (1968); Huber (1973); Portnoy (1985)

Behavior of β̂ − β0:

v ∈ Rp set of p weights

vT β̂ unbiased for vTβ0, asym. normal
Variance: [

vT
(
XTX

)−1
v

]
× r2(ρ, fε)

Key: p grows slowly with n⇒ p/n ≈ 0.

Given fε, compute r2 ⇒ possible to compare estimates

Best estimate: minimize r2 over ρ.
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Best objective function in low-dimension.

Given fε, r
2(ρ, fε) minimized by:

ρopt = − log fε

Well known: maximum likelihood estimate (MLE).

Example MLEs:

1 Normal errors: Least squares (LS): ρopt(x) = x2.

2 Double exponential errors: Least absolute deviations
(LAD): ρopt(x) = |x |. (Robust)
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Surprising simulations!

D.E. errors: E‖β̂LAD − β0‖22/E‖β̂LS − β0‖22
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M-estimates in high-dimension.
PNAS: El Karoui et. al. 2012, to appear

Assume:

p/n→ κ ∈ (0, 1)

Xi
iid∼ N (0, Ip)

Then: for set of p weights v , ‖v‖2 = 1:

1 vT β̂ unbiased for vTβ0, asym. normal.

2 Variance:
p−1 × r2(ρ, fε;κ)

Can characterize r2 (complicated!)

Best estimate: given fε AND κ, minimize r2 across ρ
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Optimal M-estimates in high-dimension
PNAS: Bean et. al. 2012, to appear

Key results: given error density fε,

1 For each dimension p/n ≈ κ there exists ropt(κ) such that
r(ρ, fε;κ) ≥ ropt(κ) for all ρ

Can characterize ropt(κ)

2 When fε is log-concave, ropt is achieved by an “optimal
loss function” ρopt .
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Details of ρopt .

Let fr ,ε = N (0, r2) ∗ fε.

Write ropt = ropt(κ). Optimal loss:

ρopt(x) =
(
P2 + r2opt log fropt ,ε

)∗
(x)− P2(x),

⇒ optimal objective adaptive to dimension!

P2(x) = x2/2

g∗ is the conjugate dual of generic convex g .
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Optimal loss vs. LAD, D.E. errors

Computing the optimal objective
The case of Gaussian errors.
Corollary 1. In the setting of i.i.d Gaussian predictors,
among all convex objective functions, l2 is optimal in regres-
sion when the errors are Gaussian.

In the case of Gaussian ε, it is clear that φropt ? fε is a

Gaussian density. Hence,
(
p2 + r2opt log(φropt ? fε)

)∗
is a mul-

tiple of p2 (up to centering) and so is ρopt. General arguments
given later guarantee that this latter multiple is strictly posi-
tive. Therefore, ρopt is p2, up to positive scaling and centering.
Carrying out the computations detailed in the algorithm we

actually arrive at ρopt(x) = x2

2

(
p/n

1−p/n

)
−K . Details are in

the SI.

The case of double exponential errors. We recall that in low
dimension (e.g p fixed, n goes to infinity), classic results show
that the optimal objective is `1. As we will see, it is not at
all the case when p and n grow in such a way that p/n has a
finite limit in (0, 1). We recall that in (4), we observed that
when p/n was greater than 0.3 or so, `2 actually performed
better than `1 for double exponential errors.

Though there is no analytic form for the optimal objective,
it can be computed numerically. We discuss how and present
a picture to get a better understanding of the solution of our
problem.

The optimal objective

For r > 0, r ∈ R, and Φ the Gaussian cumulative distri-
bution function, let us define

Rr(x) = r2 log

(
e

(x−r2)2

2r2 Φ

[
x− r2
r

]
+ e

(x+r2)2

2r2 Φ

[
−x+ r2

r

])

+ r2 log(

√
π

2
r) .

It is easy to verify that, when the errors are double exponen-
tial, −r2 log(φr ?fε)(x) = x2/2−Rr(x). Hence, effectively the
optimal objective is the function taking values

ρopt(x) = R∗ropt(x)− x2/2 .
It is of course important to be able to compute this func-

tion and the estimate β̂opt based on it. We show below
that Rr is a smooth convex function for all r. Hence, in
the case we are considering, R′r is increasing and therefore
invertible. If we call y∗(x) = (R′ropt)

−1(x), we see that
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Fig. 1. p/n = .5: comparison of ρopt (optimal objective) to l2 and l1. ropt
is the solution of r2Iε(r) = p/n; for p/n = .5, ropt ' 1.35
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2
`2
(κ) for double exponential errors: the ratio is always

less than 1, showing the superiority of the objective we propose over `2.
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2
`1
(κ) : the ratio is always less than 1, showing the su-

periority of the objective we propose over `1. Naturally, the ratio goes to 1 at 0, since

we know that `1 is the optimal objective when p/n → 0 for double exponential

errors.

ρopt(x) = xy∗(x) − Rropt(y
∗(x)) − x2/2. We also need to

be able to compute the derivative of ρopt (denoted ψopt) to

implement a gradient descent algorithm to compute β̂opt. For
this, we can use a well-known result in convex analysis, that
says that for a convex function h (under regularity conditions)
(h∗)′ = (h′)−1 (see (14), Corollary 23.5.1).

We present a plot to get an intuitive feeling for how this
function ρopt behaves (more can be found in the SI). Figure 1
compares ρopt to other objective functions of potential inter-
est in the case of p/n = .5. All the functions we compare are
normalized so that they take value 0 at 0 and 1 at 1.

Comparison of asymptotic performance of ρopt against
other objective functions

We compare r2opt to the results we would get using other
objective functions ρ in the case of double exponential errors.
Recall that our system [S] allows us to compute the asymp-
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ρopt(x) = xy∗(x) − Rropt(y
∗(x)) − x2/2. We also need to

be able to compute the derivative of ρopt (denoted ψopt) to

implement a gradient descent algorithm to compute β̂opt. For
this, we can use a well-known result in convex analysis, that
says that for a convex function h (under regularity conditions)
(h∗)′ = (h′)−1 (see (14), Corollary 23.5.1).

We present a plot to get an intuitive feeling for how this
function ρopt behaves (more can be found in the SI). Figure 1
compares ρopt to other objective functions of potential inter-
est in the case of p/n = .5. All the functions we compare are
normalized so that they take value 0 at 0 and 1 at 1.

Comparison of asymptotic performance of ρopt against
other objective functions

We compare r2opt to the results we would get using other
objective functions ρ in the case of double exponential errors.
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Example: behavior of optimal loss function
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Takeaway messages.

1 Low-dimensional intuition upended in high-dimensional
setting

2 Can get precise distributional behavior in high-dimensions

Random vs. fixed design...

3 Can optimize the loss in high-dimensions

A new family of dimension-adaptive loss functions

4 (Not presented) Extensions to penalized estimates

E.g. LASSO, ridge-type estimates
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