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Basic notations

» NP Bayes - priors on infinite dimensional space (density,
regression function, conditional density etc)

» Examples - Dirichlet process, Gaussian process, Levy process
etc

» Today - posterior consistency & rates in density estimation

» X - complete separable metric space (R for our discussion), B
Borel o-field on X

» F space of densities on (X, B) w.r.t. some dominating
measure
R 70 ol FeR i



» The posterior distribution is the random measure

_ fB [T7; f(yi)dN(f)
ST F(yi)dn(f)

where B is a m'ble subset of F and y" = (y1,...,¥n)

nes1y")

» Assume data sampled i.i.d. from fy € F

» Qn: does the posterior concentrate on arbitrary small
neighborhoods of fy as n — oo? If so, at what rate? For
which neighborhoods?

» First, need notions of distances and neighborhoods on density
spaces



Distances & nbds on density space

» Weak convergence - f, — f weakly if for any bounded
continuous function ¢, [ ¢f, — [ of

A weak nbd W,(fo) = {f € F:| [ ¢f — [ ¢fo| < €}

Strong or L; convergence - f, — f in Ly if [ |f, — f| — 0
A strong nbd S.(fo) ={f € F: [|f — fo| = ||f — fol}1 < ¢}
Also, KL(fo, f) = [ folog(fo/f), W*(f,fo) = [(VF — VFo)?
A KL nbd KL (fy) = {f € F : KL(fy, f) < €}

Entropy of Fo C F := log N(e, Fo,|| - ||1) is log min. number
of balls of radius ¢ in the metric d required to cover Fy.

vV V. v vV VvY

» Interplay among these distances crucial, list of common
inequalities in appendix



Weak / strong neighborhood / consistency

Fa
/ \KKG(fo)={f:fef-,

> K L(fo, f) < €/4}

Weak consistency:
My (We(fo)e | y™) — 0 as.
Strong consistency:

/ ITx (Se(fo) | y™) — 0 ass.

v
We(fo) ={f: f € F,[Jplo(@)f(z) — g(z) fo(z)}dz| < e,

g ;5 — R bounded continuous}

S.(fo)={f:fE€Fullf — fol, <€}



Posterior consistency

v

Basic idea: posterior probability of an arbitrary nbd around f;
goesto 1l as n — o0

Weak consistency: M(W,(fy) | y") — 1 as. fy
Strong consistency: M(S(f) | y") — 1 as. fy

v

v

v

Early result by Doob (1948): posterior consistent a.e. on prior
support, not useful to check consistency at a particular density

Breakthrough result by Schwartz (1965)

v



Consistent tests

> Let fy € F and U be some nbd of f

» Intuitively, should be able to separate fy from U - formalized
through consistent tests

» A test function ¢,(y") is a non-negative measurable function
bounded by 1

» Suppose testing Hyp : f = fy vs Hy : f € U°

» ¢n(y") can be thought of as a randomized decision rule so
that ¢,(y") = I(Rejection region|y”)

> A sequence of test functions said to be uniformly consistent if
both probabilities of type | and Il errors converge to 0 as n
increases



Exponentially consistent & unbiased tests

» {dn(y")} is uniformly exponentially consistent if there exist
constants C, 8 > 0 such that

Erlon(y")] < Cexp(—np)

sup [1 — ¢n(y™)] < Cexp(—np)
feuc

> {pn(y™)} is strictly unbiased if

Exlon(y] < inf [6n(y")]

» The two notions above are equivalent (Hoeffding's inequality)

» Unbiased tests often easier to construct



Schwartz's theorem

Theorem
Let N be a prior on F and fy € KL(IM). If there exist a sequence of
exponentially consistent tests for Hy : f = fy vs Hy : f € U€, then

NU|y") —1as. Pg°

» Note fy € KL(I) means for any ¢ > 0, M(KL.(fp)) >0

» Loosely speaking, Schwartz's theorem states large KL support
-+ model identifiability condition = posterior consistency

» The KL distance related to likelihood ratios, since
(1/n) >0 log{fo(Yi)/f(Yi)} — KL(fo,f) by SLLN



Why Schwartz’ s theorem works?

fo € KL(I)= liminf e"® D,

=00, V3 > 0.
b /

4 )
Exp. Cons. sequence of tests for f = f
vs. f € U makes likelihood ratio small
\_ /
/
e |y - Jo T AFSTE)  — | N,
n V5
J# =y Jé((y))n(df) — | D,
NS . /
'
e — > log Y e—nKL(fo;f) )
[re s >H (df) — [re I1(df)



Specialized conditions for weak and strong consistency

» Turns out that the exponentially consistent test criterion is
difficult to verify

» Need easy to verifiable conditions specific to neighborhoods

Theorem: weak
If fo € KL(), the posterior is weakly consistent at fy.



Specialized conditions for weak and strong consistency

» Turns out that the exponentially consistent test criterion is
difficult to verify

» Need easy to verifiable conditions specific to neighborhoods

Theorem: weak
If fo € KL(), the posterior is weakly consistent at fy.

Theorem: strong (Ghosal et al. 1999)

If fo € KL(IT) and there exists a sequence of subsets F,, C F such
that for any € > 0

1. log N(e, Fn, || - |[1) = o(n)
2. M(FS) < e

then the posterior is Li-consistent at fj.



Weak consistency

Weak comnsistency: If U, is a weak neighborhood of f,
for a bounded conts. function ¢
< e} }

[Ugb{fil/ﬁbf—/qbfo

Choose the test function to be ¢ since

[Type I error: Es {op(Y1)} = [ &fo and

Power: inffeyg [of > [ofo+e
= existence of unbiased sequence of tests

KL condition suffices for weak consistency




Strong consistency — Why Ghosal et al. 1999 works?

Strong consistency: If U is a strong nhbd. of f; i.e.
U=A{f:\f—fol, <e}

"Trivial to construct exponential consistent tests for

Holf:fo&HlifGC

=
- /

How do we do it?

Cc={f:f - Al <A - foll, /2) A
Take B ={y: fi(y) > fo(y)} and ® = Ip
Then Ey, (®) > E;, () + ||/ — foll, /2

/




Why Ghosal et al 1999 works?

Uuenr,

Ue UcNFEINFS) < e "o

\
\

Evn < Jyenr, Ty £2511(df) + [, 1

1=1 fO(Y)

<df>}

f
Tln

I
T2n

Tin < N(e ||l , Fn)e P01, Ty, /Dy, < e7"002

N

log N (e, |||, Fn)

" For L; consistency, we need
[I(F¢) < e ™P1,
~ o(n)

~




Example: Density estimation using DPM

> Y1, Ys,...,~ fop € F, want to estimate f

» We specify 1 by
Y ~ N(pi,0?), (pi,0?) | P ~ P, P~ DP(aGy), Gy a
distribution on i x RN, 7, are constructed by stick-breaking
Beta(1, «) variates.

» Induced density of
Yi, £(yi) = 2opey TN (i, ton, 07)s (1o, o4)? ~ Go

» Under what conditions on fy and Gy do we have weak and
strong posterior consistency?



Weak cons. in DPM (Ghosal et al. 1999; Tokdar 2006)

Split K L(fy, f) into 2 parts
Lo )= | fow) log~ dy+/f
7 J o5
f=Je

() L 77 G“’”)/ (%)

y

ﬂnpose tail \ /

conditions on f

to approximate

fo by compactly
supported G
needed to construct

Qe nsi ty ]’E / \ small

Verify f

in the weak
support of II
and also 75
is arbitrarily




Constructing f : approximation idea

[ Know [ ¢ (¥5%) folw)dp — fo(y) as o — 0 }

I

-

\_

Want compactly supported G, s.t.
Js 20 (452)dG L (u,0) = foly)

~

-

| |

dGn(:ua U) X 5an (O)fO (:u)][—n,n] (:LL)
with o,, — 0




Handling T,

/Al. fo is nowhere zero, continuous and bounded by M < oo\
A2. | [ fo(y)log fo(y)dy| < oo

A3. | fo(y)log f;’((;’)) dy| < oo,
where ¢ (y) = infie(y_1,541) fo(?)-
@4. 4 7 > 0 such that fy g2 £ (y)dy < . .

Under (A1)-(A4), using a compactly supported sequence G,

[ ) = [ 5o (Y1) dGutuo) }

approximates fo(y) and makes 7 arbitrarily small
as n — o0o. Choose f = f,, for large enough ny.




Handling T,

Find a weak nhbd W of G,,, such that for G € W, T5 is small.

L
~

flylék ' flylzk '
W =A{G: ‘(b x Gno (yi) — &% G(yi)| < €} use tail condition

4 N
What are the pieces left 7

Need to ensure that a DP assigns some mass at W

9 TRUE if Gy has tull support y




Strong consistency in DPM (Sieve construction)
)

4 How do we construct a sieve F,, such that

1. log N(Fn, ||| €) = o(n)

2 IFE) =0 )

Ghosal et al. 1999 restrictive in terms of applicability
An alternative (Pati, Dunson & Tokdar, 2011)

4 N

F, resembles finite mixtures »_,°" 7 hi¢(—y;5h )

1. First few atoms are in a compact set
2. Tail sum is small




Strong consistency in DPM (Sieve construction)




Sieve construction (Contd.)

/FOI' f17f2 EFna”fl_f2”1 — \
I (1) ‘fb (1) <1>( ) — ¢ W@ <2>( )‘dy
e ] 2

N /

#Q balls needed= N (O, 1. 1,6 |]) < d; (?—:) + ds log 7—: + 1.

# ‘balls needed= N (F,, 4e, ||-]|,) <

{dl(?—:) —|—d2 log};—n”+1} m?“




Strong consistency (Choice of m,,a,,l,,h,)

1. If GO Ny (1 ,uO,EO) X IG(O' a b) then
= O(y), b = O(), I

2. (Zh m. +1 Th >e) < g~ ™mnlogmy mn_O(logn)
3. With these choices of m,,,a,,, [, h,, given any & > 0,

log(N (Fn,4¢, ||-][1)) = o(n),

4. TI(F2) < O(e ™)



Posterior convergence rates

» Once we have consistency, natural to ask whether we can
characterize how fast the posterior concentrates

» In posterior consistency, we consider a fixed ball of radius €
around fy

» Let the ball around fy shrink with n as fast as possible so that
it still captures most of the posterior mass

» The minimum possible such sequence ¢, such that
E{N(f : d(f,fy) > Me, | y"} — 0 is called the rate of
convergence of the posterior



Main rate theorem

Ghosal, Ghosh & van der Vaart (2000)

Suppose that for a sequence ¢, — 0 with ne2 — oo, a constant
C > 0 and sets F,, C F, one has

log N(ep, Fn,d) < Clnei
NFs) <G exp{—ne%(Cg +4)}

f fo \?
ﬂ(fuﬂ : /fo|0gf0 < e%,/folog (fo) < e%;) > Cyexp{—Cane2}.
w,o W,0

Then, for sufficiently large M, E{T1(f : d(f,fy) > Me, | y"} — 0

» A more subtle interplay, roughly requires prior to be uniformly
spread over the parameter space

» d usually Hellinger or L; metric



Application to a specific problem

» Density estimation model (Kundu & Dunson, 2011)
Yi = ,u(nl) + €iy Ni ~ U(Oa 1)7
e ~N(0,6°), (i=1,...,n).

» fy true density, Fo c.d.f. with pg = F(;l :(0,1) — R, induced
density f,, -(y) =

1 bo
/ boly — Fy1(£))dt = / boly — 2)fo(2)dz
0 a0

> _ smoothness assumptions on fy imply
d(fy, fup,s) = 0as o —0

» fy compactly supported implies 1 : [0, 1] — [ao, bo]

» fy supported on R implies |uo(t)] — oo as t — 0/1



Prior specification

» Prior for (u,0) € C([0,1]) ® (0, 00) induces a prior on the
space of densities on (R, B)

» Intuition: 1, concentrating around o and 1, around zero
would imply £, , places +ve probability to arbitrary nbds of fy

> Induced measure v,(B) = A(u~*(B)), 1 : ([0,1], 1) — (R, B)
m'ble, A Leb. meas. on [0, 1]

» Marginalizing out 7;, induced density £, ,,

1
froly) = /0 boly — p(t))dt = / boly — 2)v,(d2)



Review of Gaussian processes

v

Want mechanism to produce random (continuous) functions.

A random vector X : (Q,&, P) — R* is Gaussian if a™X is
Gaussian for any a € R¥

Let X : (Q,&,P) — (C[0,1],]] - ||oc) be measurable

X is called Gaussian if L(X) is Gaussian for any linear
functional L

For example, L(f) = f(1/2), L(f) = 2f(1/3) — f(3/4), ...
Clearly, for any (t1,...,tm), Y. aiX(t;) is Gaussian for any
acR”

(Xtyy -y Xe,) is MVN

v

v

v

v

v

v



Covariance kernel approach

» Specify a joint Gaussian for (X4, ..., Xs,) consistently
» Let C(t,s) be a positive definite covariance kernel, i.e.,
C = (C(t;, tj)) is positive definite for any t1,..., tm
> (Xt,...,Xt,) ~ N(0,C), so that C(s, t) = cov(Xs, Xt)

» Common examples: C(t,s) = min(t,s),
C(t,s) = exp(—~|t — s|), C(t,s) = exp(—k|t — s|?) etc



Series expansion approach

» Mercer's theorem: There exists a sequence of eigenvalues
An | 0 and an orthonormal system of eigenfunctions ¢, such
that

£) =Y Anon(s)dn(t)
h=1

> Define X(t) = 32°, A2 Z, ¢u(t), where Z, i.i.d. N(0,1)
> cov(Xs, Xe) = 3021 Moon(s)en(t) = C(s, t)

» We can start with a series representation by choosing A\, and
¢p. Different choices lead to splines, neural networks,
wavelets, etc



RKHS of Gaussian processes

» In np Bayes, want priors to place positive probability around
arbitrary neighborhoods of a large class of parameter values
(large support property)

v

The prior concentration plays a key role in determining the
rate of posterior contraction

v

The reproducing kernel Hilbert space (RKHS) of a Gaussian
process determines the prior support and concentration

v

Let X be a zero mean Gaussian process on [0, 1] with
covariance kernel C(s,t) = E(XsX¢)

The RKHS H is the completion of the linear space

v

f(t) = ZahC(sh, t), sn € [0,1], ap € R.
h=1

v

Intuitively, a space of functions that are similar to the
covariance kernel in terms of smoothness



» If f1(t) = C(s1,t), ~2(t) = C(s2, t), define
(fi, 2)m = C(s1,52). Extend linearly and continuously to
whole of H

» Finite-dimensional case: let X ~ Ny(0,X), ¥ pd. Then
H = R*, (x,y)z = xZ 1y and hence ||x||3 = xTZ " 1x.
Same RKHS norm on density contours!!

» The support of a mean zero Gaussian process is the closure of
the RKHS. For many standard covariance kernels, the support
equals C[0, 1]

» The rate of posterior contraction at a function fy depends on

= inf h|[% — log Pr(||X]] o
o (€) heH:nLn—fouH«H |lix — log Pr([|X[[ec <€)



Back to the rates problem

» Ongoing work (Pati, Bhattacharya & Dunson, 2011) on
posterior convergence rates in NL-LVM model

» Only focus on the compactly supported case here

» Analysis of non-compact case more involved as quantile
function of a non-compact density not in C[0, 1]

» Standard sieve available for GP priors (van der Vaart & van
Zanten 2007 onwards) - clever application of Borel's inequality

» KL condition main hurdle



>

Assume fy twice continuously differentiable, optimal minimax
rate in that case n=%/°

Using a GP prior with squared exponential covariance kernel
for p & an inverse-gamma prior for o, we achieve the minimax
rate up to a log-factor

One has

5\ oo\
/f0|og | S (fo fuo) 1+ log [l =—lleo
o e

With €, = n=2/5(log n)* and o = €3

ne

{o € lon on+onl 1= polle 3 O(03)}

o )
{/fologfja;‘,/mog<f) ja;‘}.
Mo o



Appendix - list of common inequalities

> |lp—allf < 4h°(p,q) < 4llp—qllx

> KL(p,q) > Ilp — qll3/2

> KL(p,q) < h*(p,q){1 + log||p/ql[cc }

» p=N(p1,0?),q = N(u2,03) with o2 > 01 > 02/2, then
lp— gll < (2/m)%2 |1 — pol /o2 + 3(02 — 01) /o1



Key references:

» Ghosal’s research page
http : //wwwé4.stat.ncsu.edu/ sghosal / papers.html

» van der Vaart's page
http : //www.few.vu.nl/ aad/research.html

» van Zanten's page
http : //www.win.tue.nl/ jzanten/research.html|

» Key consistency references: Barron, Schervish & Wasserman,
1999; Ghosal, Ghosh & Ramamurthy, 1999; Tokdar, 2006;
Tokdar & Ghosh, 2007

» Key rates references: Ghosal, Ghosh & van der Vaart, 2000;

Ghosal & van der Vaart, 2001; Ghosal & van der Vaart, 2007;
van der Vaart & van Zanten, 2007-2009.

» Several others not cited ! Our apologies - See references
within these articles.



