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Overview of the slides

◮ Priors on density space

◮ Notions of neighborhood and distances

◮ Consistent tests

◮ Weak and strong posterior consistency - main conditions &
applications

◮ Notion of rates of posterior convergence

◮ Main conditions

◮ Examples



Basic notations

◮ NP Bayes - priors on infinite dimensional space (density,
regression function, conditional density etc)

◮ Examples - Dirichlet process, Gaussian process, Levy process
etc

◮ Today - posterior consistency & rates in density estimation

◮ X - complete separable metric space (ℜ for our discussion), B
Borel σ-field on X

◮ F space of densities on (X ,B) w.r.t. some dominating
measure

◮ Y1, . . . ,Yn

i.i.d.∼ f ∈ F , f ∼ Π



Main questions

◮ The posterior distribution is the random measure

Π(B | yn) =

∫
B

∏
n

i=1 f (yi )dΠ(f )
∫
F

∏
n

i=1 f (yi )dΠ(f )

where B is a m’ble subset of F and yn = (y1, . . . , yn)

◮ Assume data sampled i.i.d. from f0 ∈ F
◮ Qn: does the posterior concentrate on arbitrary small

neighborhoods of f0 as n → ∞? If so, at what rate? For
which neighborhoods?

◮ First, need notions of distances and neighborhoods on density
spaces



Distances & nbds on density space

◮ Weak convergence - fn → f weakly if for any bounded
continuous function φ,

∫
φfn →

∫
φf

◮ A weak nbd Wǫ(f0) = {f ∈ F : |
∫

φf −
∫

φf0| < ǫ}
◮ Strong or L1 convergence - fn → f in L1 if

∫
|fn − f | → 0

◮ A strong nbd Sǫ(f0) = {f ∈ F :
∫
|f − f0| = ||f − f0||1 < ǫ}

◮ Also, KL(f0, f ) =
∫

f0 log(f0/f ), h2(f , f0) =
∫

(
√

f −
√

f0)
2

◮ A KL nbd KLǫ(f0) = {f ∈ F : KL(f0, f ) < ǫ}
◮ Entropy of F0 ⊂ F := log N(ǫ,F0, || · ||1) is log min. number

of balls of radius ǫ in the metric d required to cover F0.

◮ Interplay among these distances crucial, list of common
inequalities in appendix



Weak / strong  neighborhood / consistency

Fd

f0

Kǫ(f0) = {f : f ∈ F ,
KL(f0, f) < ǫ

2/4}

Weak consistency:
ΠX
(
Wǫ(f0)

c | yn
)
→ 0 a.s.

Strong consistency:
ΠX
(
Sǫ(f0)

c | yn
)
→ 0 a.s.

Sǫ(f0) =
{
f : f ∈ Fd, ‖f − f0‖1 < ǫ

}

Wǫ(f0) =
{
f : f ∈ F ,

∣∣∫
ℜ
{g(x)f(x)− g(x)f0(x)}dx

∣∣ < ǫ,
g : ℜ → ℜ bounded continuous

}



Posterior consistency

◮ Basic idea: posterior probability of an arbitrary nbd around f0
goes to 1 as n → ∞

◮ Weak consistency: Π(Wǫ(f0) | yn) → 1 a.s. f0

◮ Strong consistency: Π(Sǫ(f0) | yn) → 1 a.s. f0

◮ Early result by Doob (1948): posterior consistent a.e. on prior
support, not useful to check consistency at a particular density

◮ Breakthrough result by Schwartz (1965)



Consistent tests

◮ Let f0 ∈ F and U be some nbd of f0

◮ Intuitively, should be able to separate f0 from Uc - formalized
through consistent tests

◮ A test function φn(y
n) is a non-negative measurable function

bounded by 1

◮ Suppose testing H0 : f = f0 vs H1 : f ∈ Uc

◮ φn(y
n) can be thought of as a randomized decision rule so

that φn(y
n) = I (Rejection region|yn)

◮ A sequence of test functions said to be uniformly consistent if
both probabilities of type I and II errors converge to 0 as n

increases



Exponentially consistent & unbiased tests

◮ {φn(y
n)} is uniformly exponentially consistent if there exist

constants C , β > 0 such that

Ef0
[φn(y

n)] ≤ C exp (−nβ)

sup
f ∈Uc

[1 − φn(y
n)] ≤ C exp (−nβ)

◮ {φn(y
n)} is strictly unbiased if

Ef0
[φn(y

n)] < inf
f ∈Uc

[φn(y
n)]

◮ The two notions above are equivalent (Hoeffding’s inequality)

◮ Unbiased tests often easier to construct



Schwartz’s theorem

Theorem
Let Π be a prior on F and f0 ∈ KL(Π). If there exist a sequence of
exponentially consistent tests for H0 : f = f0 vs H1 : f ∈ Uc , then
Π(U | yn) → 1 a.s. P∞

f0

◮ Note f0 ∈ KL(Π) means for any ǫ > 0, Π(KLǫ(f0)) > 0

◮ Loosely speaking, Schwartz’s theorem states large KL support
+ model identifiability condition =⇒ posterior consistency

◮ The KL distance related to likelihood ratios, since
(1/n)

∑
n

i=1
log{f0(Yi )/f (Yi )} → KL(f0, f ) by SLLN



Nn

Dn

f0 ∈ KL(Π)⇒ lim inf enβDn =∞, ∀ β > 0.

Why Schwartz’ s theorem works?

Π(U c | Yn) =

∫
Uc

∏n

i=1
f(Yi)
f0(Yi)

Π(df)
∫
F

∏n

i=1
f(Yi)
f0(Yi)

Π(df)

∫
F
e
−
∑

n
i=1 log

f0(Yi)

f(Yi) Π(df)→
∫
F
e−nKL(f0;f)Π(df)

Exp. Cons. sequence of tests for f = f0
vs. f ∈ Uc makes likelihood ratio small



Specialized conditions for weak and strong consistency

◮ Turns out that the exponentially consistent test criterion is
difficult to verify

◮ Need easy to verifiable conditions specific to neighborhoods

Theorem: weak
If f0 ∈ KL(Π), the posterior is weakly consistent at f0.



Specialized conditions for weak and strong consistency

◮ Turns out that the exponentially consistent test criterion is
difficult to verify

◮ Need easy to verifiable conditions specific to neighborhoods

Theorem: weak
If f0 ∈ KL(Π), the posterior is weakly consistent at f0.

Theorem: strong (Ghosal et al. 1999)

If f0 ∈ KL(Π) and there exists a sequence of subsets Fn ⊂ F such
that for any ǫ > 0

1. log N(ǫ,Fn, || · ||1) ≈ o(n)

2. Π(Fc

n
) ≤ e

−cn

then the posterior is L1-consistent at f0.



Weak consistency

Uφ =

{
f :

∣∣∣∣

∫
φf −

∫
φf0

∣∣∣∣ < ǫ
}

Weak consistency: If Uφ is a weak neighborhood of f0,
for a bounded conts. function φ

Choose the test function to be φ since
Type I error: Ef0{φ(Y1)} =

∫
φf0 and

Power: inff∈Uc
φ

∫
φf ≥

∫
φf0 + ǫ

⇒ existence of unbiased sequence of tests
KL condition suffices for weak consistency



Strong consistency – Why Ghosal et al. 1999 works?

U = {f : ‖f − f0‖1 < ǫ}

C
f0

H0 : f = f0 &H1 : f ∈ C
Trivial to construct exponential consistent tests for

How do we do it?

f1

C = {f : ‖f − f1‖1 ≤ ‖f1 − f0‖1 /2}

Take B = {y : f1(y) > f0(y)} and Φ = IB

Then Ef1(Φ) ≥ Ef0(Φ) + ‖f1 − f0‖1 /2

Strong consistency: If U is a strong nhbd. of f0 i.e.



For L1 consistency, we need

U c

T1n T2n

U c ∩ Fcn,Π(F
c
n) < e

−nβ1

Nn ≤
∫
Uc∩Fn

∏n

i=1
f(Yi)
f0(Yi)

Π(df) +
∫
Fc
n

∏n

i=1
f(Yi)
f0(Yi)

Π(df)·

Π(Fcn) < e
−nβ1 ,

logN(ǫ, ‖·‖ ,Fn) ≈ o(n)

U c ∩ Fn

Why Ghosal et al 1999 works?

T1n ≤ N(ǫ, ‖·‖ ,Fn)e
−nβ01 , T2n/Dn < e

−nβ02



Example: Density estimation using DPM

◮ Y1,Y2, . . . ,∼ f0 ∈ F , want to estimate f0

◮ We specify Π by
Yi ∼ N(µi , σ

2
i
), (µi , σ

2
i
) | P ∼ P,P ∼ DP(αG0), G0 a

distribution on ℜ× ℜ+, πh are constructed by stick-breaking
Beta(1, α) variates.

◮ Induced density of
Yi , f (yi ) =

∑
∞

h=1
πhN(yi , µh, σ

2
h
), (µh, σh)

2 ∼ G0

◮ Under what conditions on f0 and G0 do we have weak and
strong posterior consistency?



Weak cons. in DPM (Ghosal et al. 1999; Tokdar 2006)

T1 T2

KL(f0, f) =

∫

ℜ

f0(y) log
f0(y)

f̃ (y)
dy+

∫

ℜ

f0(y) log
f̃ (y)

f (y)
dy.

Impose tail
conditions on f0
to approximate
f0 by compactly
supported G̃
needed to construct
density f̃

Split KL(f0, f) into 2 parts

f =
∫
φ(y−µ

σ
)G(µ, σ)

f̃ =
∫
φ(y−µ

σ
)G̃(µ, σ)

Verify f̃
in the weak
support of Π
and also T2
is arbitrarily
small



CCCCoooonnnnssssttttrrrruuuuccccttttiiiinnnngggg ˜̃̃̃ffff :::: aaaapppppppprrrrooooxxxxiiiimmmmaaaattttiiiioooonnnn iiiiddddeeeeaaaa

Know
∫
ℜ
1
σ
φ
(
y−µ
σ

)
f0(µ)dµ→ f0(y) as σ → 0

with σn → 0

dG̃n(µ, σ) ∝ δσn (σ)f0(µ)I[−n,n](µ)

Want compactly supported G̃n s.t.∫
ℜ
1
σ
φ
(
y−µ
σ

)
dG̃n(µ, σ)→ f0(y)



Handling T1

Choose f̃ = fn0 for large enough n0.
approximates f0(y) and makes T1 arbitrarily small
as n→∞.

Under (A1)-(A4), using a compactly supported sequence G̃n,

fn(y) =

∫
1

σ
φ

(
y − µ

σ

)
dG̃n(µ, σ)

A1. f0 is nowhere zero, continuous and bounded by M <∞.
A2. |

∫
ℜ f0(y) log f0(y)dy| <∞.

A3. |
∫
ℜ f0(y) log

f0(y)
ψ(y)

dy| <∞,
where ψ(y) = inft∈[y−1,y+1] f0(t).

A4. ∃ η > 0 such that
∫
Y |y|

2(1+η)
f0(y)dy <∞.



Handling TTTT2222

T2 =

∫

ℜ
f0(y) log

{
φ ∗ G̃n0(y)
φ ∗G(y)

}
dy < ǫ

What are the pieces left ?
Need to ensure that a DP assigns some mass at W

Find a weak nhbd W of G̃n0 such that for G ∈W , T2 is small.

∫
|y|≤k ·

use tail conditionW = {G :
∣∣∣φ ∗ G̃n0 (yi)− φ ∗G(yi)

∣∣∣ < ǫ}

∫
|y|≥k ·

TRUE if G0 has full support



Strong consistency in DPM (Sieve construction)

How do we construct a sieve Fn such that
1. logN(Fn, ‖·‖ , ǫ) = o(n)
2. Π(Fcn) = O(e−n)

1. First few atoms are in a compact set
2. Tail sum is small

Ghosal et al. 1999 restrictive in terms of applicability

An alternative (Pati, Dunson & Tokdar, 2011)

Fn resembles finite mixtures
∑mn

h=1 πh
1
σh
φ
(
y−µh
σh

)



Strong consistency in DPM (Sieve construction)

Fn =

{
f : f(y) =

∞∑

h=1

πh
1

σh
φ

(
y − µh
σh

)
, {(µh, σh)}

mn

h=1

∈ Θan,hn,ln ,
∑

h≥mn+1

πh ≤ ǫ

}
.

F
Fcn

Fn

Θan,hn,ln =
{
(µ, σ) : |µ| ≤ an, ln ≤ σ ≤ hn

}
.



Sieve construction (Contd.)

# balls needed=

# balls needed=

For f1, f2 ∈ Fn, ‖f1 − f2‖1 ≤

N(Θan,hn,ln , ǫ, ‖·‖) ≤ d1
(
an
ln

)
+ d2 log

hn
ln
+ 1.

{
d1
(
an
ln

)
+ d2 log

hn
ln
+ 1

}mn

mmn

n

N(Fn, 4ǫ, ‖·‖1) ≤

+
∑mn

h=1

∣∣∣π(1)h − π
(2)
h

∣∣∣+ 2ǫ.

∫
X
∑mn

h=1 π
(1)
h

∣∣∣φ
µ
(1)

h
,σ

(1)

h

(y)− φ
µ
(2)

h
,σ

(2)

h

(y)
∣∣∣ dy



Strong consistency (Choice of )mmmmnnnn,,,, aaaannnn,,,, llllnnnn,,,, hhhhnnnn

1. If G0 = Np(µ;µ0,Σ0)× IG(σ2; a, b), then
an = O(

√
n), ln = O( 1√

n
), hn = en.

2. P (
∑∞

h=mn+1
πh > ǫ) ≤ e−mn logmn , mn = O

(
n

log n

)

3. With these choices of mn, an, ln, hn, given any ξ > 0,

log(N(Fn, 4ǫ, ‖·‖1)) = o(n),

4. Π(Fcn) ≤ O(e−n)



Posterior convergence rates

I Once we have consistency, natural to ask whether we can
characterize how fast the posterior concentrates

I In posterior consistency, we consider a fixed ball of radius ε
around f0

I Let the ball around f0 shrink with n as fast as possible so that
it still captures most of the posterior mass

I The minimum possible such sequence εn such that
E{Π(f : d(f , f0) ≥ Mεn | yn} → 0 is called the rate of
convergence of the posterior



Main rate theorem

Ghosal, Ghosh & van der Vaart (2000)

Suppose that for a sequence εn → 0 with nε2n →∞, a constant
C > 0 and sets Fn ⊂ F , one has

log N(εn,Fn, d) ≤ C1nε
2
n

Π(Fc
n ) ≤ C3 exp{−nε2n(C2 + 4)}

Π

(
fµ,σ :

∫
f0 log

f0
fµ,σ
≤ ε2n,

∫
f0 log

(
f0

fµ,σ

)2

≤ ε2n
)
≥ C4 exp{−C2nε

2
n}.

Then, for sufficiently large M, E{Π(f : d(f , f0) ≥ Mεn | yn} → 0

I A more subtle interplay, roughly requires prior to be uniformly
spread over the parameter space

I d usually Hellinger or L1 metric



Application to a specific problem

I Density estimation model (Kundu & Dunson, 2011)

yi = µ(ηi ) + εi , ηi ∼ U(0, 1),

εi ∼ N(0, σ2), (i = 1, . . . , n).

I f0 true density, F0 c.d.f. with µ0 = F−1
0 : (0, 1)→ <, induced

density fµ0,σ(y) =

∫ 1

0
φσ(y − F−1

0 (t))dt =

∫ b0

a0

φσ(y − z)f0(z)dz

I fµ0,σ(y) = φσ ∗ f0(y) , smoothness assumptions on f0 imply

d(f0, fµ0,σ)→ 0 as σ → 0

I f0 compactly supported implies µ0 : [0, 1]→ [a0, b0]

I f0 supported on < implies |µ0(t)| → ∞ as t → 0/1



Prior specification

I Prior for (µ, σ) ∈ C ([0, 1])⊗ (0,∞) induces a prior on the
space of densities on (<,B)

I Intuition: Πµ concentrating around µ0 and Πσ around zero
would imply fµ,σ places +ve probability to arbitrary nbds of f0

I Induced measure νµ(B) = λ̃(µ−1(B)), µ : ([0, 1], λ̃)→ (<,B)
m’ble, λ̃ Leb. meas. on [0, 1]

I Marginalizing out ηi , induced density fµ,σ,

fµ,σ(y) =

∫ 1

0
φσ(y − µ(t))dt =

∫
φσ(y − z)νµ(dz)



Review of Gaussian processes

I Want mechanism to produce random (continuous) functions.

I A random vector X : (Ω, E ,P)→ <k is Gaussian if aTX is
Gaussian for any a ∈ <k

I Let X : (Ω, E ,P)→ (C[0, 1], || · ||∞) be measurable

I X is called Gaussian if L(X ) is Gaussian for any linear
functional L

I For example, L(f ) = f (1/2), L(f ) = 2f (1/3)− f (3/4), ...

I Clearly, for any (t1, . . . , tm),
∑m

i=1 aiX (ti ) is Gaussian for any
a ∈ <m

I (Xt1 , . . . ,Xtm) is MVN



Covariance kernel approach

I Specify a joint Gaussian for (Xt1 , . . . ,Xtm) consistently

I Let C (t, s) be a positive definite covariance kernel, i.e.,
C =

(
C (ti , tj)

)
is positive definite for any t1, . . . , tm

I (Xt1 , . . . ,Xtm) ∼ N(0,C), so that C (s, t) = cov(Xs ,Xt)

I Common examples: C (t, s) = min(t, s),
C (t, s) = exp(−κ|t − s|), C (t, s) = exp(−κ|t − s|2) etc



Series expansion approach

I Mercer’s theorem: There exists a sequence of eigenvalues
λh ↓ 0 and an orthonormal system of eigenfunctions φh, such
that

C (s, t) =
∞∑

h=1

λhφh(s)φh(t)

I Define X̃ (t) =
∑∞

h=1 λ
1/2
h Zh φh(t), where Zh i.i.d. N(0, 1)

I cov
(
X̃s , X̃t

)
=
∑∞

h=1 λhφh(s)φh(t) = C (s, t)

I We can start with a series representation by choosing λh and
φh. Different choices lead to splines, neural networks,
wavelets, etc



RKHS of Gaussian processes

I In np Bayes, want priors to place positive probability around
arbitrary neighborhoods of a large class of parameter values
(large support property)

I The prior concentration plays a key role in determining the
rate of posterior contraction

I The reproducing kernel Hilbert space (RKHS) of a Gaussian
process determines the prior support and concentration

I Let X be a zero mean Gaussian process on [0, 1] with
covariance kernel C (s, t) = E (XsXt)

I The RKHS H is the completion of the linear space

f (t) =
m∑

h=1

ahC (sh, t), sh ∈ [0, 1], ah ∈ <.

I Intuitively, a space of functions that are similar to the
covariance kernel in terms of smoothness



Properties

I If f1(t) = C (s1, t), f2(t) = C (s2, t), define
(f1, f2)H = C (s1, s2). Extend linearly and continuously to
whole of H

I Finite-dimensional case: let X ∼ Nk(0,Σ), Σ pd. Then
H = <k , (x , y)H = xTΣ−1y and hence ||x ||2H = xTΣ−1x .
Same RKHS norm on density contours!!

I The support of a mean zero Gaussian process is the closure of
the RKHS. For many standard covariance kernels, the support
equals C[0, 1]

I The rate of posterior contraction at a function f0 depends on

φf0(ε) = inf
h∈H:||h−f0||H<ε

||h||2H − log Pr(||X ||∞ < ε)



Back to the rates problem

I Ongoing work (Pati, Bhattacharya & Dunson, 2011) on
posterior convergence rates in NL-LVM model

I Only focus on the compactly supported case here

I Analysis of non-compact case more involved as quantile
function of a non-compact density not in C [0, 1]

I Standard sieve available for GP priors (van der Vaart & van
Zanten 2007 onwards) - clever application of Borel’s inequality

I KL condition main hurdle



Details

I Assume f0 twice continuously differentiable, optimal minimax
rate in that case n−2/5

I Using a GP prior with squared exponential covariance kernel
for µ & an inverse-gamma prior for σ, we achieve the minimax
rate up to a log-factor

I One has∫
f0 log

(
f0

fµ,σ

)2

≤ h2(f0, fµ,σ)

(
1 + log || f0

fµ,σ
||∞
)2

I With εn = n−2/5(log n)κ and σ4
n = ε2n,

{σ ∈ [σn, σn + σb
n ], ||µ− µ0||∞ - O(σ3

n)} ⊂{∫
f0 log

f0
fµ,σ

- σ4
n,

∫
f0 log

(
f0

fµ,σ

)2

- σ4
n

}
.



Appendix - list of common inequalities

I ||p − q||21 ≤ 4h2(p, q) ≤ 4||p − q||1
I KL(p, q) ≥ ||p − q||21/2

I KL(p, q) ≤ h2(p, q){1 + log ||p/q||∞}
I p = N(µ1, σ

2
1), q = N(µ2, σ

2
2) with σ2 > σ1 > σ2/2, then

||p − q||1 ≤ (2/π)0.5|µ1 − µ2|/σ2 + 3(σ2 − σ1)/σ1



Key references:

I Ghosal’s research page
http : //www4.stat.ncsu.edu/ sghosal/papers.html

I van der Vaart’s page
http : //www .few .vu.nl/ aad/research.html

I van Zanten’s page
http : //www .win.tue.nl/ jzanten/research.html

I Key consistency references: Barron, Schervish & Wasserman,
1999; Ghosal, Ghosh & Ramamurthy, 1999; Tokdar, 2006;
Tokdar & Ghosh, 2007

I Key rates references: Ghosal, Ghosh & van der Vaart, 2000;
Ghosal & van der Vaart, 2001; Ghosal & van der Vaart, 2007;
van der Vaart & van Zanten, 2007-2009.

I Several others not cited ! Our apologies - See references
within these articles.


