Review of posterior consistency & convergence rates

Debdeep Pati & Anirban Bhattacharya

Department of Statistical Science, Duke University

Working group meeting presentation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Overview of the slides

- Priors on density space
- Notions of neighborhood and distances
- Consistent tests
- Weak and strong posterior consistency main conditions & applications

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Notion of rates of posterior convergence
- Main conditions
- Examples

- NP Bayes priors on infinite dimensional space (density, regression function, conditional density etc)
- Examples Dirichlet process, Gaussian process, Levy process etc
- Today posterior consistency & rates in density estimation
- X complete separable metric space (ℜ for our discussion), B
 Borel σ-field on X

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ➤ F space of densities on (X, B) w.r.t. some dominating measure
- ► $Y_1, \ldots, Y_n \stackrel{\text{i.i.d.}}{\sim} f \in \mathcal{F}, f \sim \Pi$

The posterior distribution is the random measure

$$\Pi(B \mid y^n) = \frac{\int_B \prod_{i=1}^n f(y_i) d\Pi(f)}{\int_{\mathcal{F}} \prod_{i=1}^n f(y_i) d\Pi(f)}$$

where B is a m'ble subset of \mathcal{F} and $y^n = (y_1, \ldots, y_n)$

- Assume data sampled i.i.d. from $f_0 \in \mathcal{F}$
- ▶ Qn: does the posterior concentrate on arbitrary small neighborhoods of f_0 as $n \to \infty$? If so, at what rate? For which neighborhoods?
- First, need notions of distances and neighborhoods on density spaces

Distances & nbds on density space

- ▶ Weak convergence $f_n \rightarrow f$ weakly if for any bounded continuous function ϕ , $\int \phi f_n \rightarrow \int \phi f$
- A weak nbd $W_{\epsilon}(f_0) = \{f \in \mathcal{F} : |\int \phi f \int \phi f_0| < \epsilon\}$
- Strong or L_1 convergence $f_n \to f$ in L_1 if $\int |f_n f| \to 0$
- ► A strong nbd $S_{\epsilon}(f_0) = \{f \in \mathcal{F} : \int |f f_0| = ||f f_0||_1 < \epsilon\}$
- Also, $KL(f_0, f) = \int f_0 \log(f_0/f), \ h^2(f, f_0) = \int (\sqrt{f} \sqrt{f_0})^2$
- ► A KL nbd $KL_{\epsilon}(f_0) = \{f \in \mathcal{F} : KL(f_0, f) < \epsilon\}$
- Entropy of *F*₀ ⊂ *F* := log *N*(*ε*, *F*₀, || · ||₁) is log min. number of balls of radius *ε* in the metric *d* required to cover *F*₀.

 Interplay among these distances crucial, list of common inequalities in appendix

Weak / strong neighborhood / consistency



- Basic idea: posterior probability of an arbitrary nbd around f₀ goes to 1 as n → ∞
- Weak consistency: $\Pi(W_{\epsilon}(f_0) \mid y^n) \rightarrow 1$ a.s. f_0
- Strong consistency: $\Pi(S_{\epsilon}(f_0) \mid y^n) \rightarrow 1$ a.s. f_0
- Early result by Doob (1948): posterior consistent a.e. on prior support, not useful to check consistency at a particular density

Breakthrough result by Schwartz (1965)

- Let $f_0 \in \mathcal{F}$ and U be some nbd of f_0
- Intuitively, should be able to separate f₀ from U^c formalized through consistent tests
- ► A test function φ_n(yⁿ) is a non-negative measurable function bounded by 1
- Suppose testing $H_0: f = f_0$ vs $H_1: f \in U^c$
- φ_n(yⁿ) can be thought of as a randomized decision rule so
 that φ_n(yⁿ) = I(Rejection region|yⁿ)
- A sequence of test functions said to be uniformly consistent if both probabilities of type I and II errors converge to 0 as n increases

Exponentially consistent & unbiased tests

{φ_n(yⁿ)} is uniformly exponentially consistent if there exist constants C, β > 0 such that

$$\mathsf{E}_{f_0}[\phi_n(y^n)] \le C \exp\left(-n\beta\right)$$

$$\sup_{f \in U^c} [1 - \phi_n(y^n)] \le C \exp\left(-n\beta\right)$$

• $\{\phi_n(y^n)\}$ is strictly unbiased if

$$\mathsf{E}_{f_0}[\phi_n(y^n)] < \inf_{f \in U^c}[\phi_n(y^n)]$$

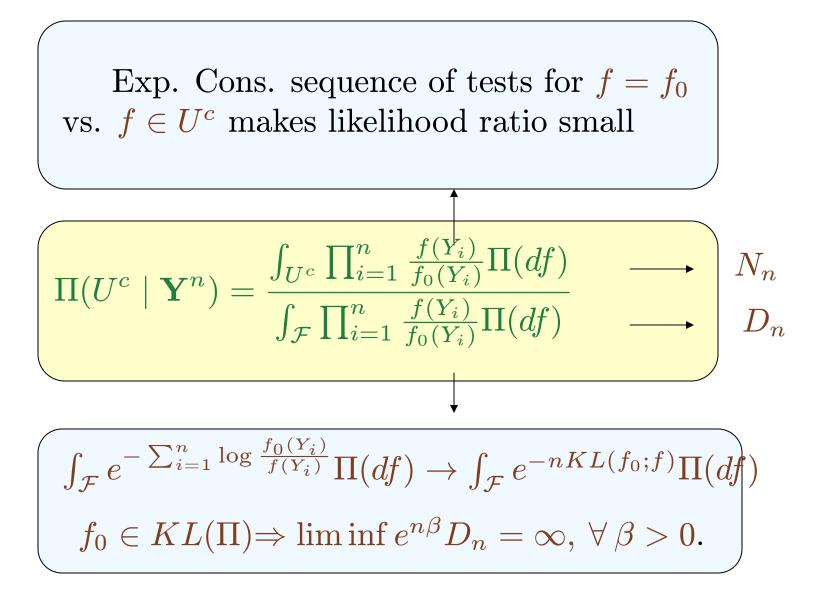
The two notions above are equivalent (Hoeffding's inequality)
 Unbiased tests often easier to construct

Theorem

Let Π be a prior on \mathcal{F} and $f_0 \in \mathsf{KL}(\Pi)$. If there exist a sequence of exponentially consistent tests for $H_0 : f = f_0$ vs $H_1 : f \in U^c$, then $\Pi(U \mid y^n) \to 1$ a.s. $P_{f_0}^{\infty}$

- ▶ Note $f_0 \in \mathsf{KL}(\Pi)$ means for any $\epsilon > 0$, $\Pi(\mathsf{KL}_{\epsilon}(f_0)) > 0$
- Loosely speaking, Schwartz's theorem states large KL support
 + model identifiability condition ⇒ posterior consistency

► The KL distance related to likelihood ratios, since $(1/n)\sum_{i=1}^{n} \log\{f_0(Y_i)/f(Y_i)\} \rightarrow KL(f_0, f)$ by SLLN



Specialized conditions for weak and strong consistency

- Turns out that the exponentially consistent test criterion is difficult to verify
- Need easy to verifiable conditions specific to neighborhoods

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem: weak If $f_0 \in KL(\Pi)$, the posterior is weakly consistent at f_0 .

Specialized conditions for weak and strong consistency

- Turns out that the exponentially consistent test criterion is difficult to verify
- Need easy to verifiable conditions specific to neighborhoods

Theorem: weak If $f_0 \in KL(\Pi)$, the posterior is weakly consistent at f_0 .

Theorem: strong (Ghosal et al. 1999) If $f_0 \in \mathsf{KL}(\Pi)$ and there exists a sequence of subsets $\mathcal{F}_n \subset \mathcal{F}$ such that for any $\epsilon > 0$

- 1. $\log N(\epsilon, \mathcal{F}_n, || \cdot ||_1) \approx o(n)$
- 2. $\Pi(\mathcal{F}_n^c) \leq e^{-cn}$

then the posterior is L_1 -consistent at f_0 .

Weak consistency: If U_{ϕ} is a weak neighborhood of f_0 , for a bounded conts. function ϕ

$$\left(U_{\phi} = \left\{f : \left|\int \phi f - \int \phi f_{0}\right| < \epsilon\right\}\right)$$

Choose the test function to be ϕ since Type I error: $E_{f_0} \{\phi(Y_1)\} = \int \phi f_0$ and Power: $\inf_{f \in U_{\phi}^c} \int \phi f \ge \int \phi f_0 + \epsilon$ \Rightarrow existence of unbiased sequence of tests **KL condition suffices for weak consistency**

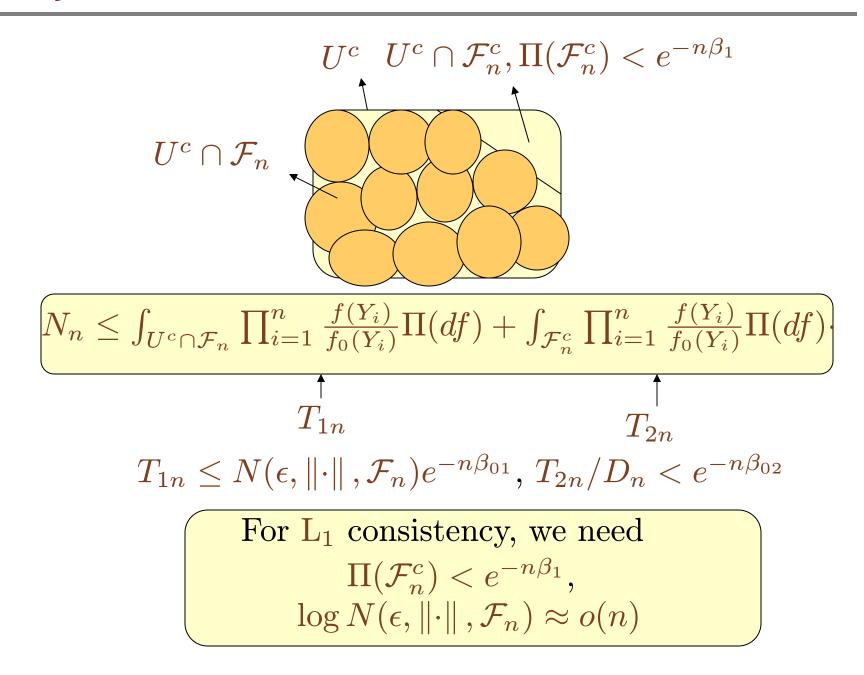
Strong consistency – Why Ghosal et al. 1999 works?

Strong consistency: If U is a strong nhbd. of f_0 i.e. $U = \{f : ||f - f_0||_1 < \epsilon\}$ Trivial to construct exponential consistent tests for $H_0 : f = f_0 \& H_1 : f \in C$ $f_0 \bullet \bullet f_1$

How do we do it?

 $C = \{f : \|f - f_1\|_1 \le \|f_1 - f_0\|_1 / 2\}$ Take $B = \{y : f_1(y) > f_0(y)\}$ and $\Phi = I_B$ Then $E_{f_1}(\Phi) \ge E_{f_0}(\Phi) + \|f_1 - f_0\|_1 / 2$

Why Ghosal et al 1999 works?

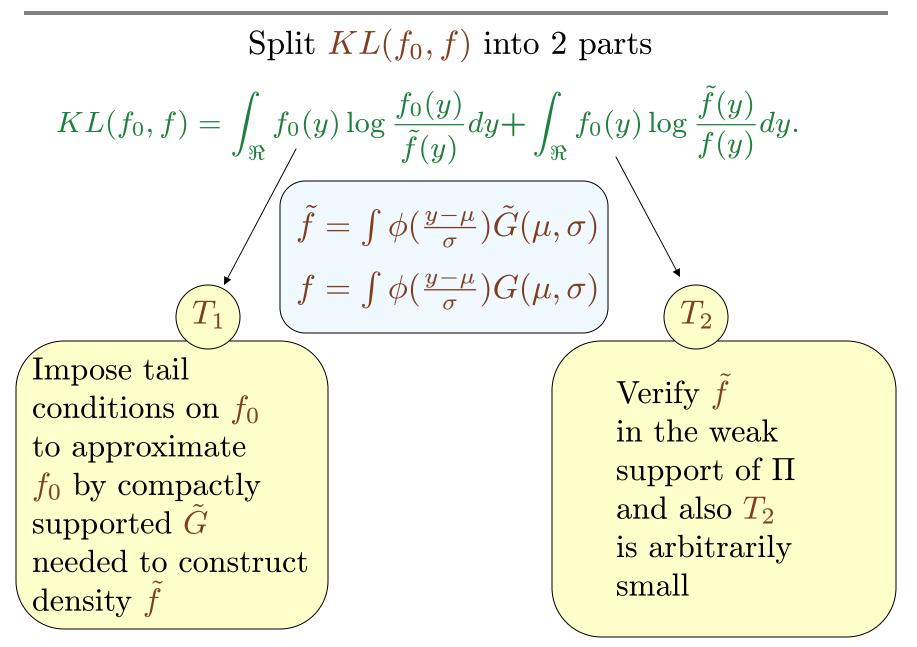


Example: Density estimation using DPM

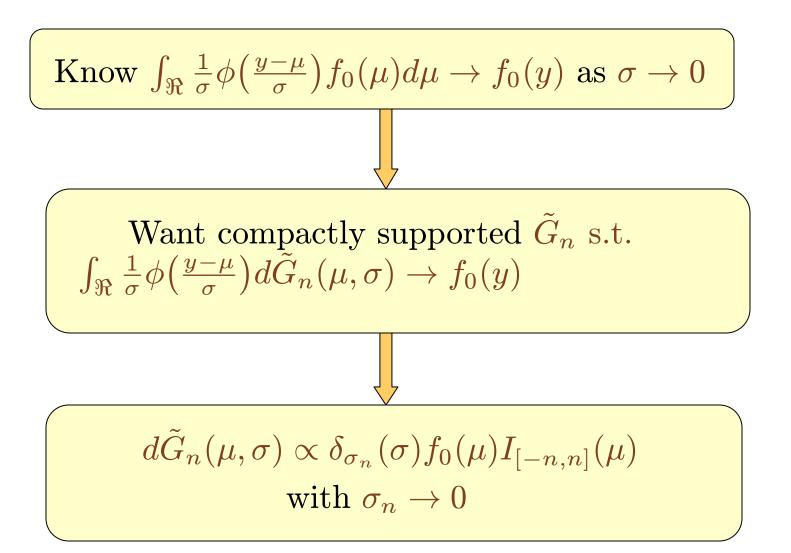
- ▶ $Y_1, Y_2, \ldots, \sim f_0 \in \mathcal{F}$, want to estimate f_0
- We specify Π by Y_i ~ N(μ_i, σ²_i), (μ_i, σ²_i) | P ~ P, P ~ DP(αG₀), G₀ a distribution on ℜ × ℜ⁺, π_h are constructed by stick-breaking Beta(1, α) variates.
- Induced density of $Y_i, f(y_i) = \sum_{h=1}^{\infty} \pi_h N(y_i, \mu_h, \sigma_h^2), (\mu_h, \sigma_h)^2 \sim G_0$
- ▶ Under what conditions on *f*₀ and *G*₀ do we have weak and strong posterior consistency?

(日) (同) (三) (三) (三) (○) (○)

Weak cons. in DPM (Ghosal et al. 1999; Tokdar 2006)



Constructing \tilde{f} : approximation idea



Handling T_1

 $\begin{array}{l} \text{A1. } f_0 \text{ is nowhere zero, continuous and bounded by } M < \infty. \\ \text{A2. } |\int_{\Re} f_0(y) \log f_0(y) dy| < \infty. \\ \text{A3. } |\int_{\Re} f_0(y) \log \frac{f_0(y)}{\psi(y)} dy| < \infty, \\ \text{ where } \psi(y) = \inf_{t \in [y-1,y+1]} f_0(t). \\ \text{A4. } \exists \ \eta > 0 \text{ such that } \int_{\mathcal{Y}} |y|^{2(1+\eta)} f_0(y) dy < \infty. \end{array}$

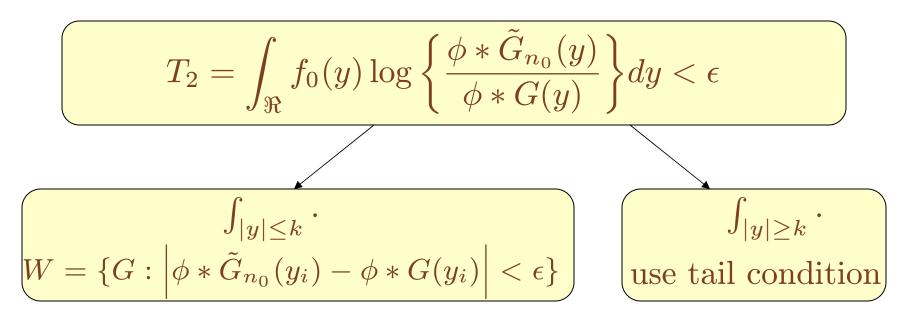
Under (A1)-(A4), using a compactly supported sequence \tilde{G}_n ,

$$f_n(y) = \int \frac{1}{\sigma} \phi\left(\frac{y-\mu}{\sigma}\right) d\tilde{G}_n(\mu,\sigma)$$

approximates $f_0(y)$ and makes T_1 arbitrarily small as $n \to \infty$. Choose $\tilde{f} = f_{n_0}$ for large enough n_0 .

Handling T_2

Find a weak nhbd W of \tilde{G}_{n_0} such that for $G \in W$, T_2 is small.



What are the pieces left ?Need to ensure that a DP assigns some mass at WTRUE if G_0 has full support

Strong consistency in DPM (Sieve construction)

How do we construct a sieve \mathcal{F}_n such that 1. $\log N(\mathcal{F}_n, \|\cdot\|, \epsilon) = o(n)$ 2. $\Pi(\mathcal{F}_n^c) = O(e^{-n})$

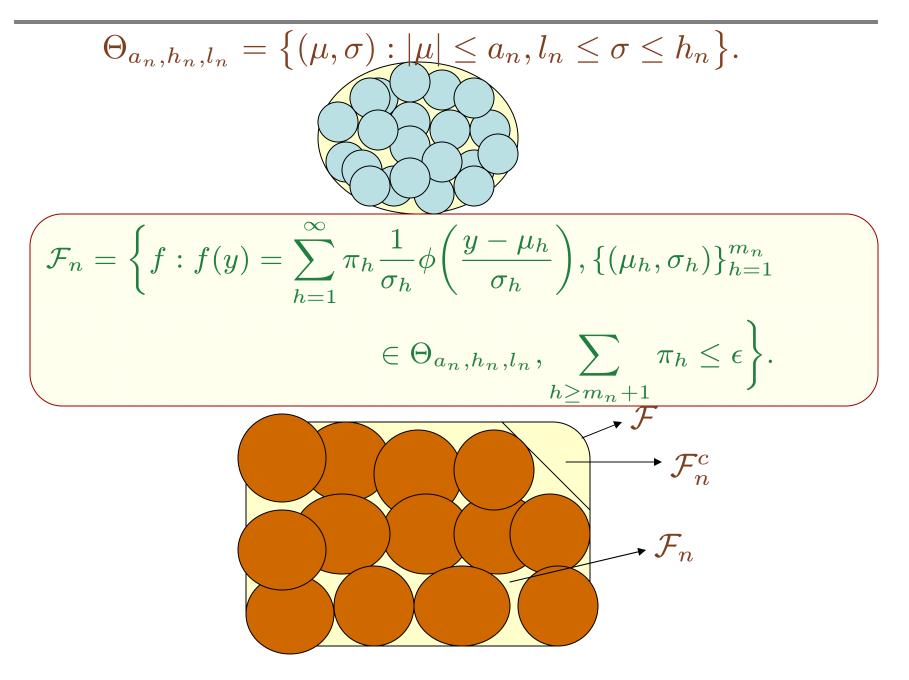
Ghosal et al. 1999 restrictive in terms of applicability An alternative (Pati, Dunson & Tokdar, 2011)

 \mathcal{F}_n resembles finite mixtures $\sum_{h=1}^{m_n} \pi_h \frac{1}{\sigma_h} \phi\left(\frac{y-\mu_h}{\sigma_h}\right)$

1. First few atoms are in a compact set

2. Tail sum is small

Strong consistency in DPM (Sieve construction)



Sieve construction (Contd.)

For
$$f_1, f_2 \in \mathcal{F}_n, \|f_1 - f_2\|_1 \leq \int_{\mathcal{X}} \sum_{h=1}^{m_n} \pi_h^{(1)} \left| \phi_{\mu_h^{(1)}, \sigma_h^{(1)}}(y) - \phi_{\mu_h^{(2)}, \sigma_h^{(2)}}(y) \right| dy + \sum_{h=1}^{m_n} \left| \pi_h^{(1)} - \pi_h^{(2)} \right| + 2\epsilon.$$

balls needed= $N(\Theta_{a_n,h_n,l_n},\epsilon, \|\cdot\|) \le d_1\left(\frac{a_n}{l_n}\right) + d_2\log\frac{h_n}{l_n} + 1.$

balls needed=
$$N(\mathcal{F}_n, 4\epsilon, \|\cdot\|_1) \leq \left\{ d_1\left(\frac{a_n}{l_n}\right) + d_2\log\frac{h_n}{l_n} + 1 \right\}^{m_n} m_n^{m_n}$$

Strong consistency (Choice of m_n, a_n, l_n, h_n)

1. If
$$G_0 = N_p(\mu; \mu_0, \Sigma_0) \times IG(\sigma^2; a, b)$$
, then
 $a_n = O(\sqrt{n}), l_n = O(\frac{1}{\sqrt{n}}), h_n = e^n$.

- 2. $P(\sum_{h=m_n+1}^{\infty} \pi_h > \epsilon) \le e^{-m_n \log m_n}, \ m_n = O\left(\frac{n}{\log n}\right)$
- 3. With these choices of m_n, a_n, l_n, h_n , given any $\xi > 0$,

 $\log(N(\mathcal{F}_n, 4\epsilon, \|\cdot\|_1)) = o(n),$

4. $\Pi(\mathcal{F}_n^c) \le O(e^{-n})$

- Once we have consistency, natural to ask whether we can characterize how fast the posterior concentrates
- In posterior consistency, we consider a fixed ball of radius e around f₀
- Let the ball around f₀ shrink with n as fast as possible so that it still captures most of the posterior mass

Ghosal, Ghosh & van der Vaart (2000) Suppose that for a sequence $\epsilon_n \to 0$ with $n\epsilon_n^2 \to \infty$, a constant C > 0 and sets $\mathcal{F}_n \subset \mathcal{F}$, one has

$$\begin{split} &\log N(\epsilon_n, \mathcal{F}_n, d) \leq C_1 n \epsilon_n^2 \\ &\Pi(\mathcal{F}_n^c) \leq C_3 \exp\{-n \epsilon_n^2 (C_2 + 4)\} \\ &\Pi\left(f_{\mu, \sigma} : \int f_0 \log \frac{f_0}{f_{\mu, \sigma}} \leq \epsilon_n^2, \int f_0 \log \left(\frac{f_0}{f_{\mu, \sigma}}\right)^2 \leq \epsilon_n^2\right) \geq C_4 \exp\{-C_2 n \epsilon_n^2\}. \end{split}$$

Then, for sufficiently large M, $E\{\Pi(f: d(f, f_0) \ge M\epsilon_n \mid y^n\} \to 0$

- A more subtle interplay, roughly requires prior to be uniformly spread over the parameter space
- d usually Hellinger or L₁ metric

Application to a specific problem

Density estimation model (Kundu & Dunson, 2011)

$$y_i = \mu(\eta_i) + \epsilon_i, \ \eta_i \sim U(0, 1),$$

$$\epsilon_i \sim N(0, \sigma^2), \ (i = 1, \dots, n).$$

▶ f_0 true density, F_0 c.d.f. with $\mu_0 = F_0^{-1} : (0,1) \rightarrow \Re$, induced density $f_{\mu_0,\sigma}(y) =$

$$\int_{0}^{1} \phi_{\sigma}(y - F_{0}^{-1}(t)) dt = \int_{a_{0}}^{b_{0}} \phi_{\sigma}(y - z) f_{0}(z) dz$$

- ► $f_{\mu_0,\sigma}(y) = \phi_{\sigma} * f_0(y)$, smoothness assumptions on f_0 imply $d(f_0, f_{\mu_0,\sigma}) \to 0$ as $\sigma \to 0$
- ▶ f_0 compactly supported implies $\mu_0 : [0,1] \rightarrow [a_0, b_0]$
- ► f_0 supported on \Re implies $|\mu_0(t)| \to \infty$ as $t \to 0/1$

Prior specification

- Prior for (μ, σ) ∈ C([0,1]) ⊗ (0,∞) induces a prior on the space of densities on (ℜ, B)
- Intuition: Π_μ concentrating around μ₀ and Π_σ around zero would imply f_{μ,σ} places +ve probability to arbitrary nbds of f₀
- Induced measure ν_μ(B) = λ̃(μ⁻¹(B)), μ : ([0,1], λ̃) → (ℜ, B) m'ble, λ̃ Leb. meas. on [0,1]
- Marginalizing out η_i , induced density $f_{\mu,\sigma}$,

$$f_{\mu,\sigma}(y) = \int_0^1 \phi_\sigma(y-\mu(t)) dt = \int \phi_\sigma(y-z)
u_\mu(dz)$$

Review of Gaussian processes

- Want mechanism to produce random (continuous) functions.
- A random vector X : (Ω, E, P) → ℜ^k is Gaussian if a^TX is Gaussian for any a ∈ ℜ^k
- ▶ Let $X : (\Omega, \mathcal{E}, P) \rightarrow (\mathcal{C}[0, 1], || \cdot ||_{\infty})$ be measurable
- X is called <u>Gaussian</u> if L(X) is Gaussian for any linear functional L
- ► For example, L(f) = f(1/2), L(f) = 2f(1/3) f(3/4), ...
- Clearly, for any (t_1, \ldots, t_m) , $\sum_{i=1}^m a_i X(t_i)$ is Gaussian for any $a \in \Re^m$

• $(X_{t_1}, \ldots, X_{t_m})$ is MVN

- Specify a joint Gaussian for $(X_{t_1}, \ldots, X_{t_m})$ consistently
- Let C(t, s) be a positive definite covariance kernel, i.e., $\mathbf{C} = (C(t_i, t_j))$ is positive definite for any t_1, \ldots, t_m
- $(X_{t_1},\ldots,X_{t_m}) \sim N(0,\mathbf{C})$, so that $C(s,t) = \operatorname{cov}(X_s,X_t)$
- Common examples: $C(t,s) = \min(t,s)$, $C(t,s) = \exp(-\kappa |t-s|)$, $C(t,s) = \exp(-\kappa |t-s|^2)$ etc

Series expansion approach

Mercer's theorem: There exists a sequence of eigenvalues λ_h ↓ 0 and an orthonormal system of eigenfunctions φ_h, such that

$$C(s,t) = \sum_{h=1}^{\infty} \lambda_h \phi_h(s) \phi_h(t)$$

- Define $\tilde{X}(t) = \sum_{h=1}^{\infty} \lambda_h^{1/2} Z_h \phi_h(t)$, where Z_h i.i.d. N(0,1)
- $\blacktriangleright \operatorname{cov}(\tilde{X}_s, \tilde{X}_t) = \sum_{h=1}^{\infty} \lambda_h \phi_h(s) \phi_h(t) = C(s, t)$
- We can start with a series representation by choosing λ_h and φ_h. Different choices lead to splines, neural networks, wavelets, etc

RKHS of Gaussian processes

- In np Bayes, want priors to place positive probability around arbitrary neighborhoods of a large class of parameter values (large support property)
- The prior concentration plays a key role in determining the rate of posterior contraction
- The reproducing kernel Hilbert space (RKHS) of a Gaussian process determines the prior support and concentration
- Let X be a zero mean Gaussian process on [0, 1] with covariance kernel C(s, t) = E(X_sX_t)
- ▶ The RKHS II is the completion of the linear space

$$f(t)=\sum_{h=1}^m a_h C(s_h,t), \, s_h\in [0,1], \, a_h\in \Re.$$

 Intuitively, a space of functions that are similar to the covariance kernel in terms of smoothness

Properties

- ▶ If $f_1(t) = C(s_1, t), f_2(t) = C(s_2, t)$, define $(f_1, f_2)_{\mathbb{H}} = C(s_1, s_2)$. Extend linearly and continuously to whole of \mathbb{H}
- ► Finite-dimensional case: let $X \sim N_k(0, \Sigma)$, Σ pd. Then $\mathbb{H} = \Re^k$, $(x, y)_{\mathbb{H}} = x^T \Sigma^{-1} y$ and hence $||x||_{\mathbb{H}}^2 = x^T \Sigma^{-1} x$. Same RKHS norm on density contours!!
- The support of a mean zero Gaussian process is the closure of the RKHS. For many standard covariance kernels, the support equals C[0, 1]
- The rate of posterior contraction at a function f_0 depends on

$$\phi_{f_0}(\epsilon) = \inf_{h \in \mathbb{H}: ||h - f_0||_{\mathbb{H}} < \epsilon} ||h||_{\mathbb{H}}^2 - \log \Pr(||X||_{\infty} < \epsilon)$$

- Ongoing work (Pati, Bhattacharya & Dunson, 2011) on posterior convergence rates in NL-LVM model
- Only focus on the compactly supported case here
- Analysis of non-compact case more involved as quantile function of a non-compact density not in C[0, 1]
- Standard sieve available for GP priors (van der Vaart & van Zanten 2007 onwards) - clever application of Borel's inequality

KL condition main hurdle

Details

- Assume f_0 twice continuously differentiable, optimal minimax rate in that case $n^{-2/5}$
- Using a GP prior with squared exponential covariance kernel for μ & an inverse-gamma prior for σ , we achieve the minimax rate up to a log-factor
- One has

$$\int f_0 \log\left(\frac{f_0}{f_{\mu,\sigma}}\right)^2 \leq h^2(f_0,f_{\mu,\sigma}) \bigg(1+\log||\frac{f_0}{f_{\mu,\sigma}}||_\infty\bigg)^2$$

• With $\epsilon_n = n^{-2/5} (\log n)^{\kappa}$ and $\sigma_n^4 = \epsilon_n^2$,

$$\{\sigma \in [\sigma_n, \sigma_n + \sigma_n^b], ||\mu - \mu_0||_{\infty} \precsim O(\sigma_n^3)\} \subset \left\{ \int f_0 \log \frac{f_0}{f_{\mu,\sigma}} \precsim \sigma_n^4, \int f_0 \log \left(\frac{f_0}{f_{\mu,\sigma}}\right)^2 \precsim \sigma_n^4 \right\}.$$

▶
$$||p - q||_1^2 \le 4h^2(p,q) \le 4||p - q||_1$$

▶ $\mathsf{KL}(p,q) \ge ||p - q||_1^2/2$
▶ $\mathsf{KL}(p,q) \le h^2(p,q)\{1 + \log ||p/q||_\infty\}$
▶ $p = \mathsf{N}(\mu_1, \sigma_1^2), q = \mathsf{N}(\mu_2, \sigma_2^2) \text{ with } \sigma_2 > \sigma_1 > \sigma_2/2, \text{ then } ||p - q||_1 \le (2/\pi)^{0.5} |\mu_1 - \mu_2|/\sigma_2 + 3(\sigma_2 - \sigma_1)/\sigma_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Ghosal's research page http://www4.stat.ncsu.edu/ sghosal/papers.html
- van der Vaart's page http://www.few.vu.nl/ aad/research.html
- van Zanten's page http://www.win.tue.nl/jzanten/research.html
- Key consistency references: Barron, Schervish & Wasserman, 1999; Ghosal, Ghosh & Ramamurthy, 1999; Tokdar, 2006; Tokdar & Ghosh, 2007
- Key rates references: Ghosal, Ghosh & van der Vaart, 2000; Ghosal & van der Vaart, 2001; Ghosal & van der Vaart, 2007; van der Vaart & van Zanten, 2007-2009.
- Several others not cited ! Our apologies See references within these articles.