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1. Introduction

I want to congratulate the authors for their fantastic work on combining two well-known

methods in causal inference, difference-in-differences (DID) and instrumental variables (IV),

in order to study causal exposure effects in repeated, cross-sectional observational studies.

By combining the strengths from each method, the proposed instrumented difference-in-

differences (iDID) is more robust to violations of the DID’s parallel trend assumption due

to an unmeasured confounder and the IV’s exclusion restriction where iDID can use an

instrument that has a direct effect on the outcome.

The goal of the paper is to reinterpret this promising method under a simple, but popular

model in econometrics and statistics, a linear IV model. Linear IV models (or linear models,

in general) have been the workhorse in applied statistics and economics to conduct data anal-

ysis. Also, in non-applied works, linear IV models have been used to build theoretical insights

and create more robust, less parametric methods. In fact, most textbook introductions of IV

or DID in econometrics use linear models as a “reference” model to ground key ideas and

discuss more complex topics (e.g. Chapter 5 of Angrist and Pischke (2008) or Chapter 5 of

Wooldridge (2010)). By using a linear IV model, I wish to provide an alternative explanation

of the authors’ fantastic method that is (hopefully) more familiar, simple, and accessible.

The paper will primarily focus on three aspects of iDID under the linear IV model:

(a) why iDID is a clear improvement over DID or a cross-sectional, IV analysis;

(b) how some of the identifying assumptions of iDID can be re-expressed using traditional,

regression-based assumptions;

(c) how to use insights from linear IV models to potentially mitigate the weak identification

problem discussed in Section 5 of the authors’ work.

Of course, according to George Box’s famous aphorism, all models are wrong and the linear IV

model used in the paper, while based on the authors’ results (see Section 2.1), is no exception.
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However, I hope the model is still useful, especially for investigators contemplating to use

iDID in their observational studies.

2. Reframing the Problem With a Linear IV Model

2.1 Review of Section 5 and Setup

We first review Section 5 of the authors’ work where the connection between iDID and

a linear IV model is hinted from a result concerning the properties of one of the authors’

proposed estimator, β̂wald. Formally, in the absence of covariates, consider the following model

for individual i’s observed data Oi = (Yi, Di, Zi, Ti) where, identical to the authors’ notation,

Yi is a real-valued outcome, Di is a binary exposure, Zi is a binary instrument, and Ti is a

binary time indicator:

Yi = βint + βDDi + βZZi + βTTi + εi, E[εi | Zi, Ti] = 0. (1)

The terms βint, βD, βZ, βT are unknown parameters of the model and the term εi is a random

error term that has mean zero given the regressors Zi and Ti, but not the regressor Di.

Using econometrics terminology, Zi and Ti are exogenous regressors (i.e. independent from

the error term) and Di is an endogenous regressor (i.e. dependent on the error term). The

authors showed that the well-known, two-stage least squares (2SLS) estimator of βD with an

“interacted” instrument ZiTi is numerically equivalent to one of their proposed estimators,

β̂wald. That is, in the first step, we regress Di on the intercept, Zi, Ti, and ZiTi and obtain

the predicted value of Di, denoted as D̂i; note that the regression in the first step must be

linear. In the second step, we regress Yi on the intercept, Zi, Ti, and D̂i and the authors

showed that the estimated coefficient for the regressor D̂i (i.e. the 2SLS estimator of βD) is

numerically equivalent to β̂wald.

We make a few remarks about model (1) that may be useful for extending iDID to other

data types. First, if covariates Xi are present, we can incorporate them in model (1), say
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by adding a linear term βᵀ
XXi where βX is another unknown parameter whose dimension is

equal to the dimension of Xi. But, this introduces additional modeling assumptions about

the relationship between Xi and Yi. Second, if there are multiple time points Ti or if the

instrument Zi is non-binary, model (1) provides one simple, starting point to extend iDID,

especially its estimation framework. For example, for multiple time points, investigators can

represent time as fixed effects in model (1) and use one (or several) interacted instruments

between Zi and each level of Ti. For a non-binary instrument, model (1) can be used as-is or

can be modified to reflect the instrument’s potentially non-linear effect on the outcome.

Taking inspiration from the authors’ numerical equivalence result, the rest of the paper

will assume that model (1) is the true model for the observed data. But, as forewarned in

Section 1, if the model is misspecified, the discussion below may be dangerously misleading

and readers should consult the authors’ work, which does not rely on a parametric model.

2.2 Advantages of iDID versus DID or IV with model (1)

Taking a step back from the authors’ result on the equivalence between β̂wald and the 2SLS

estimator of βD, the structure of the linear model (1) already reveals some of the advantages

of iDID compared to DID or a cross-sectional, IV analysis. For example, under the usual DID

setup without an instrument, the conditional mean of the error term εi given the exposure

Di and the time indicator Ti would be zero and consequently, the parallel trend assumption

would hold; in other words, the usual DID setup assumes that the exposure Di is exogenous.

Instead, iDID allows the exposure to be endogenous and the parallel trend assumption may

be violated due to an unmeasured confounder that affects the exposure and the outcome.

To better illustrate this point, consider a simple, hypothetical setup where we evaluate

the usual DID estimator (denoted as β̂DID and defined below) under model (1) where the

exposure effect is zero (i.e. βD = 0) and the instrument satisfies the exclusion restriction (i.e.

the instrument has no direct effect on the outcome so that βZ = 0). This exercise mimics an

investigator who may initially run a DID analysis and assume that the exposure is exogenous,

even though in reality, the exposure is endogenous due to unmeasured confounding. After
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some algebra, we get:

β̂DID ≡
(∑n

i=1 YiDiTi∑n
i=1 DiTi

−
∑n
i=1 Yi(1−Di)Ti∑n
i=1(1−Di)Ti

)
︸ ︷︷ ︸

Average Exposure Effect at Time Ti = 1

−
(∑n

i=1 YiDi(1− Ti)∑n
i=1 Di(1− Ti)

−
∑n
i=1 Yi(1−Di)(1− Ti)∑n
i=1(1−Di)(1− Ti)

)
︸ ︷︷ ︸

Average Exposure Effect at Time Ti = 0

=

(∑n
i=1(βT + εi)DiTi∑n

i=1 DiTi
−
∑n
i=1(βT + εi)(1−Di)Ti∑n

i=1(1−Di)Ti

)
−
(∑n

i=1 εiDi(1− Ti)∑n
i=1 Di(1− Ti)

−
∑n
i=1 εi(1−Di)(1− Ti)∑n
i=1(1−Di)(1− Ti)

)
→ (E[εi | Di = 1, Ti = 1]− E[εi | Di = 0, Ti = 1])︸ ︷︷ ︸

∆T=1

− (E[εi | Di = 1, Ti = 0]− E[εi | Di = 0, Ti = 0])︸ ︷︷ ︸
∆T=0

.

The right arrow above represents the probability limit as the sample size goes to infinity and

the limiting value is derived by using the law of large numbers. Roughly speaking, the term

∆T=1 represents the effect of unmeasured confounding at time T = 1 and ∆T=0 represents

the effect of unmeasured confounding at time T = 0. If there is no unmeasured confounding

at each time point and there are no covariates, the exposure is effectively randomly assigned

to everyone at each time point, akin to running a randomized experiment at each time point,

and the means of the error terms εi between the exposed (i.e. Di = 1) and the unexposed

(i.e. Di = 0) groups would be the same, leading to ∆T=1 = 0 and ∆T=0 = 0. In other words,

the usual DID estimator β̂DID will converge to 0, as expected from this hypothetical setup.

More generally, if the effect from unmeasured confounders are “identical” in magnitude at

each time point where ∆T=1 = ∆T=0, the DID estimator will still converge to 0; note that

the parallel trend assumption implies ∆T=1 = ∆T=0. However, if unmeasured confounders

have different effects across time so that ∆T=1 6= ∆T=0, the parallel trend assumption is

violated and β̂DID no longer converges to 0.

Also, compared to a standard, cross-sectional IV analysis, iDID allows an instrument to

violate the exclusion restriction. This can be clearly seen in model (1) where after fixing

a particular time point Ti = t, the instrument Zi can have a non-zero direct effect on the

outcome Yi through the term βZZi. Also, if an investigator naively computes the usual Wald

estimator in IV at Ti = 0 (denoted as β̂wald,T=0 and defined below), the Wald estimator would
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evaluate to the following under model (1):

β̂wald,T=0 ≡

∑n
i=1 Yi(1−Ti)Zi∑n
i=1(1−Ti)Zi

−
∑n
i=1 Yi(1−Ti)(1−Zi)∑n
i=1(1−Ti)(1−Zi)∑n

i=1Di(1−Ti)Zi∑n
i=1(1−Ti)Zi

−
∑n
i=1Di(1−Ti)(1−Zi)∑n
i=1(1−Ti)(1−Zi)

=

(
βint + βZ +

∑n
i=1(βDDi+εi)(1−Ti)Zi∑n

i=1(1−Ti)Zi

)
−
(
βint +

∑n
i=1(βDDi+εi)(1−Ti)(1−Zi)∑n

i=1(1−Ti)(1−Zi)

)
∑n
i=1 Di(1−Ti)Zi∑n
i=1(1−Ti)Zi

−
∑n
i=1Di(1−Ti)(1−Zi)∑n
i=1(1−Ti)(1−Zi)

→ βD +
βZ

E[Di | Ti = 0, Zi = 1]− E[Di | Ti = 0, Zi = 0]
.

The estimator β̂wald,T=0 is inconsistent for βD unless the instrument satisfies the exclusion

restriction by setting βZ = 0. Alternatively, by having one additional sample at Ti = 1, a

time-invariant instrument, and other assumptions stated in the authors’ work, we can remove

the bias arising from violating the exclusion restriction and consistently estimate βD. Note

that this is not the only way to consistently estimate βD when the exclusion restriction is

violated; see Kang et al. (2016), Guo et al. (2018), Tchetgen Tchetgen et al. (2021), and Ye

et al. (2021) for some examples.

2.3 Reinterpreting iDID assumptions with regression-based assumptions in linear IV models

We can also use the well-established identifying conditions for model parameters in linear IV

models, specifically a necessary condition known as the order condition (see Chapter 5.2.1 of

Wooldridge (2010)), to reinterpret some of the identifying assumptions of iDID. To review,

in linear IV models, the order condition roughly states that if the parameters in a linear

IV model are identifiable, the number of instruments must be greater than or equal to the

number of endogenous variables. In model (1), the order condition is satisfied because there

is one instrument (i.e. ZiTi) and one endogenous variable (i.e. Di).

Now suppose there is an interaction term between the exposure Di and the time indicator

Ti in model (1). If included, the interaction term would allow the effect of the exposure on

the outcome (i.e. the exposure effect) to vary across time. But, including the interaction term

would violate the order condition because there are more endogenous variables (i.e. Di and
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DiTi) than the number of instruments (i.e. ZiTi) and subsequently, the model parameters

in model (1) are not identifiable. In the authors’ work, Assumption (2d) is the “most

relevant, nonparametric formulation” of this condition where the exposure effect is assumed

to be homogeneous across time; here, we put the phrase “most relevant, nonparametric

formulation” in quotes because formally tying model (1), the order condition, and the

authors” nonparametric, identifying assumptions implicitly requires other assumptions in

the authors’ work, notably Assumption 1; see Section 4.4 of Holland (1988) for an example.

Similarly, suppose there is an interaction term between the exposure Di and the instrument

Zi in model (1). If included, the interaction term would allow the exposure effect to vary

between the encouraged (i.e. Zi = 1) and the non-encouraged (i.e. Zi = 0) groups. But, sim-

ilar to the previous paragraph, including the interaction term would would violate the order

condition. Also, in the authors’ work, Assumption (2b) is the most relevant, nonparametric

expression of this condition where the exposure effect is independent of the instrument Zi.

More generally, it’s likely that most of the identifying assumptions of iDID are nonparametric

extensions of the identification conditions for model parameters in a linear IV model.

2.4 A Robust Confidence Interval Under Weak Identification: The Anderson-Rubin Interval

Finally, we can use a simple, well-known method associated with linear IV models to poten-

tially address the weak identification problem in iDID. To review, under Assumption (2a) in

the authors’ work, iDID requires an instrument that, on average, changes the trend in the

exposure. But, when the instrument induces little to no change in the exposure’s trend, the

proposed point estimators may be biased and non-normal, a problem the authors refer to

as the weak identification problem. The authors propose a diagnostic test to check for this

problem by using a well-known F test for instrument strength in linear IV models where if

the F test is sufficiently large, the proposed estimators may be less prone to bias.

In a similar vein, we can use a method inspired by linear IV models, specifically the work
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by Anderson and Rubin (1949), to come up with a valid 1− α confidence interval that does

not suffer from the weak identification problem. To motivate the confidence interval, suppose

we want to test the null hypothesis that the coefficient βD in model (1) is some hypothesized

value βD,0, i.e. H0 : βD = βD,0. After subtracting DiβD,0 from both sides of the equality in

model (1) and taking expectations given Zi and Ti, we arrive at

E[Yi −DiβD,0 | Zi, Ti] = βint + (βD − βD,0)E[Di | Zi, Ti] + βZZi + βTTi. (2)

Now, consider the following “model” for the conditional distribution of Di given Zi and Ti,

P (Di = 1 | Zi, Ti) = γint + γZZi + γTTi + γZTZiTi, (3)

where the four terms γint, γZ, γT, γZT are unknown parameters. We put “model” in quotes

because every conditional distribution of Di given Zi and Ti can be characterized by (3); in

short, unlike (1), (3) is a saturated model of Di given binary Zi and Ti. Then, (2) becomes

E[Yi −DiβD,0 | Zi, Ti] = {βint + (βD − βD,0)γint} (4)

+ {βZ + (βD − βD,0)γZ}Zi + {βT + (βD − βD,0)γT}Ti + {(βD − βD,0)γZT}︸ ︷︷ ︸
πZT

ZiTi

Notice that equation (4) is a linear regression model with an “adjusted” outcome Yi−DiβD,0

and regressors Zi, Ti, and ZiTi. Thus, we can use ordinary least squares (OLS) to arrive at

consistent estimators and/or tests of the parameters in the curly brackets above. Second,

under the null H0 : βD = βD,0, the coefficient in front of the interaction term ZiTi in (4) (i.e.

πZT) is zero, implying another null hypothesis H0 : πZT = 0. Critically, we can test the latter

null hypothesis by using the usual (two-sided) t-test from the OLS estimate of πZT and its

null distribution does not depend on how strong the instrument changes the trend in the

exposure i.e. the term γZT in (3).

The connection between testing H0 : βD = βD,0 and testing a regression coefficient is the

basis for the Anderson-Rubin confidence interval for βD. Formally, for a level α ∈ (0, 1),

we can test the regression coefficient H0 : πZT = 0 across different values of βD,0 with the

two-sided, t-test from OLS regression and by the duality between testing and confidence

intervals, the accepted values of βD,0 (i.e. the values of βD,0 where H0 : πZT = 0 is accepted
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at level α) form a two-sided 1− α confidence interval for βD. These accepted values of βD,0,

denoted as CAR
1−α, can be compactly expressed as the following set

CAR
1−α =

{
βD,0 ∈ R | (Y −DβD,0)

ᵀHR(Y −DβD,0)

(Y −DβD,0)ᵀ(I−HR)(Y −DβD,0)/(n− 4)
6 χ2

1−α,1

}
, (5)

where, using the authors’ notation, Yᵀ = (Y1, . . . , Yn), Dᵀ = (D1, . . . , Dn), HR = R(RᵀR)−1Rᵀ,

and R is the n-dimensional vector of residuals from regressing ZiTi on the intercept, Zi, and

Ti. Also, χ2
1−α,1 is the 1−α quantile of the chi-square distribution with one degree of freedom.

One of the most appealing properties of CAR
1−α is that compared to the Wald-based confidence

interval in the authors’ work, CAR
1−α will always have at least 1−α coverage irrespective of the

instrument’s association to the trend in the exposure. In the extreme case where Assumption

(2a) is violated so that the target parameter is no longer point identified, CAR
1−α will still have

coverage by elongating itself to cover the entire real line, i.e. CAR
1−α = (−∞,∞). While an

infinite confidence interval may initially be unappealing, it alerts investigators about the lack

of point identifiability from the observed data. Also, page 1377 of Dufour (1997) showed that

a valid 1 − α confidence interval of βD must be unbounded with non-zero probability and

pages 133 and 134 of Moreira (2009) showed that under some assumptions, the test statistic

underlying CAR
1−α is the uniformly most powerful unbiased test for H0 : βD = βD,0.

Of course, there are no theoretical justifications for CAR
1−α outside of linear IV models. But,

CAR
1−α could be a promising starting point to address the weak identification problem in iDID.

3. Final Thoughts

While the linear IV model (1) is undoubtedly too simple for real data and prone to misspec-

ification, I hope the small exercise in the paper can provide another useful explanation of

iDID. More broadly, for methodologists proposing new causal methods, especially those that

are historically based on linear models, it may be meaningful to illustrate their new methods

under linear models to increase accessibility and accelerate adoption in applied settings.
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