
7. Simple Linear Regression, y = mx+ b

e.g. cars is a built-in data.frame: cars, ?cars, str(cars), head(cars)

• (Recall) plot(x, y) makes a (base graphics) scatterplot of data in the vectors x and y; e.g.

plot(x=cars$speed, y=cars$dist)

• cor(x, y) gives the correlation of vectors x and y; e.g. r = cor(x = cars$speed, y = cars$dist)

For data frame x, A = cor(x) gives a matrix A such that A[i, j] == cor(x[ , i], x[ , j]),
the correlation of A’s ith and jth columns; e.g. cor(mtcars[ , 1:3])

• lm(y ~ x, data) calculates a linear regression model y = mx+ b from the y and x variables
in the data.frame data (this uses the “formula, data” interface mentioned earlier); e.g.

m = lm(dist ~ speed, data = cars) # "m" is for "model"

str(m)

summary(m) # summary

anova(m) # ANOVA table

• m$coefficients is a vector containing y-intercept b and slope m:

y.intercept = m$coefficients[1]

slope = m$coefficients[2]

• abline(a, b) adds a line y = a + bx, and abline(reg) adds the line from model reg; e.g.

abline(a = y.intercept, b = slope) # add regression line

abline(reg = m) # same as previous line

abline(a = mean(cars$dist), b = 0, lty = "dashed") # horizontal line through mean y

• predict(model, newdata) gives ŷ from model evaluated at x (or at x1, . . . , xp in the multiple
regression case) in data.frame newdata; e.g. Our model’s x is speed; so put speeds for which
we want predictions in a data.frame with a speed column:

d = data.frame(speed = seq(from=5, to = 25, by = 5))

y.hat = predict(m, newdata = d)

# add (x, y) pairs to graph with plotting character 19, scaled by 3

points(x=d$speed, y=y.hat, pch=19, cex=3)

• In the simple regression model yi = mxi + b + εi, errors εi are assumed to be random
and independent, with εi ∼ N(0, σ). To check these assumptions, a residual plot of points
{(fitted value = ŷi, residual = ei = yi− ŷi)} should show no pattern (if errors are random and
independent) or varying vertical spread (if errors have the same standard deviation σ); e.g.

plot(m$fitted.values, m$residuals)

abline(0, 0) # y = 0 + 0x; errors should have mean 0



• A QQ plot shows quantiles of a data distribution, like our residuals, on the y-axis against the
same quantiles of a reference distribution, likeN(µ =mean(residuals), σ = sd(residuals)).
If the assumption of normal errors is met, these points should be close to a line. qqline(x)

adds a line through the first and third quantile pairs. e.g.

x = rnorm(n=100); qqnorm(x); qqline(x) # 100 random N(0, 1) points

w = rexp(100); qqnorm(w, ylim=c(-1, 5)); qqline(w) # 100 random Exp(1) points

qqnorm(m$residuals); qqline(m$residuals) # our "dist vs. speed" model

Or use plot(m) to see the residual and QQ plots, and two others, in one step:

layout(matrix(data=1:4, nrow=2, ncol=2, byrow=TRUE))

plot(m)

layout(matrix(data=1, nrow=1, ncol=1)) # reset graphics device

Multiple Linear Regression, y = a0 + a1x1 + · · ·+ apxp

e.g. y ~ x1 + x2 + x3 + x1*x2 indicates that y depends linearly on x1, x2, x3, and x1 · x2, as in
the multiple linear regression model, y = a0 + a1x1 + a2x2 + a3x3 + a4x1 · x2.

n = 100 # simulate n points, (y, x1, x2, x3), for a "sanity check" example

x1 = rnorm(n=n, mean=0, sd=1); x2 = rnorm(n); x3 = rnorm(n)

y = 3 + 4*x1 + 5*x2 + 6*x3 + 7*x1*x2

m = lm(y ~ x1 + x2 + x3 + x1*x2) # use lm() to discover coefficients from data

summary(m)

y = 3 + 4*x1 + 5*x2 + 6*x3 + 7*x1*x2 + rnorm(n) # add noise to make it harder

m2 = lm(y ~ x1 + x2 + x3 + x1*x2)

summary(m2)

m3 = lm(mpg ~ hp + wt + gear, data=mtcars) # real data from mtcars:

summary(m3)

anova(m3)

Inference on the coefficients is facilitated by summary(model), which gives

• estimated coefficients a0, a1, · · · , ap

• estimated standard deviations of coeffiecients, sa0 , · · · , sap
• the F statistic and P-value for H0 : a1 = · · · = ap = 0

• for each coefficient ai, the t statistic and P-value for H0 : ai = 0

confint(m, level = .95) gives confidence intervals for the coefficients


