
8. Simulation by replicating a calculation

Make random number generation repeatable

set.seed(seed), for integer seed, sets starting point of (pseudo-)random number generation. e.g.

a = rnorm(1); b = rnorm(1); a == b

set.seed(0); a = rnorm(1); set.seed(0); b = rnorm(1); a == b

Repeat a calculation n times

replicate(n, expr) returns a vector (or matrix or array) of n evaluations of expr. e.g.

x = replicate(n=4, expr=rnorm(1)) # 4 random samples of size 1

y = replicate(n=4, expr=rnorm(3)) # 4 random samples of size 3

z = replicate(n=4, expr=mean(rnorm(3))) # 4 means of samples of size 3

expr can be compound in curly braces, { ... }; its value is that of its last expression. e.g.

w = replicate(n=4, expr={ mu=7; sigma=3; x=rnorm(n=3, mean=mu, sd=sigma); mean(x) })

Distributions

Check ?distributions. (Recall prefixes d, p, q, r for density, probability, quantile, random.)

Let’s simulate a few distributions.

• N(µ, σ): First, confirm that x̄ is close to µ and that s is close to σ:

mu = 7; sigma = 3; mean(x <- rnorm(n=1000, mean=mu, sd=sigma)); sd(x)

Second, the Central Limit Theorem (CLT) says that for a large sample from (almost) any
distribution with finite µ and σ, X̄ ≈ N(µ, σ√

n
).

e.g. Consider U(0, 1), which has µ = max−min
2 = 1

2 and σ =

√
(max−min)2

12 =
√

1
12 . Simulate

CLT by finding many sample means from samples from U(0, 1):

curve(dunif(x, min=0, max=1), from=-0.1, to=1.1, ylim=c(0,8), lty=2) # U(0,1)

n = 30 # sample size (also try n=1 to see CLT fail)

N = 100 # number of samples

x.bars = replicate(n=N, expr=mean(runif(n=n, min=0, max=1))) # vector of sample means

mean(x.bars) # should be near 1/2

sd(x.bars) # should be near sqrt(1/12)/sqrt(n), about .0527

curve(dnorm(x, mean=1/2, sd=sqrt(1/12)/sqrt(n)), from=0, to=1, lty=3, add=TRUE) # CLT

lines(density(x.bars), lty=1) # sampling distribution of bar(x)

rug(x.bars)

legend(x="topright", legend=c("U(0,1)", "CLT", expression(bar(X))), lty=c(2,3,1))

• tn−1: For a random sample X1, . . . , Xn from N(µ, σ), the quantity T = X̄−µ
s/
√
n

follows the

Student’s t distribution with n− 1 degrees of freedom, denoted tn−1.

e.g. Simulate tn−1 for n = 6:

n = 6 # sample size

N = 100 # number of samples

mu = 7

sigma = 3

t = replicate(N, { x=rnorm(n, mean=mu, sd=sigma); (mean(x) - mu)/(sd(x)/sqrt(n)) })

plot(density(t)) # sampling distribution of T ~ t_{n-1}

rug(t)

curve(dt(x, df=n-1), lty="dashed", add=TRUE) # true t_{n-1}

curve(dnorm(x, mean=0, sd=1), lty="dotted", add=TRUE) # add N(0, 1) for reference

legend(x="topright", legend=c(expression("true "*t[n-1]), "simulated t", "N(0, 1)"),

lty=c("dashed", "solid", "dotted"))

• χ2
n: If Z1, · · · , Zn are independent, N(0, 1) random variables, then X2 =

∑n
i=1 Z

2
i ∼ χ2

n. ...

• Fn1,n2 : If X ∼ χ2
n1

and Y ∼ χ2
n2

are independent, then
X/n1

Y/n2
∼ F (n1, n2). ...

What is a P -value?

A P -value is the probability, assuming H0 is true, of getting data, as summarized by the test
statistic, more extreme than the sample data. e.g. Guinness says pouring a glass should take 119.5
seconds. Here’s a random sample of times from a server:

x = c(118, 121, 113, 116, 117, 112, 113)

Is this server pouring correctly? TestH0 : µ = 119.5 vs. H1 : µ 6= 119.5: (out = t.test(x, mu=119.5))

Simulate P -value by seeing how often t, from random samples, is greater than out$statistic:

mu = 119.5

sigma = sd(x)

n = length(x) # sample size

N = 1000 # number of replicates

t = replicate(N, { x=rnorm(n, mean=mu, sd=sigma); (mean(x) - mu)/(sd(x)/sqrt(n)) })

more.extreme = (abs(t) > abs(out$statistic))

(simulated.p.value = sum(more.extreme) / N)

out$p.value

plot(density(t), main=bquote(.(N) * " Simulated t statistics")) # visualize P-value

rug(t)

points(x=out$statistic, y=0, pch=19, col="red")

text(x=out$statistic, y=.02, labels="out$statistic")

