
3. Loops (through a sequence, 0 or more times, or 1 or more times)

Iterate through a sequence (vector or list)

This for loop runs EXPRESSION for each value VARIABLE in SEQUENCE. (UPPER.CASE text is a
placeholder for R code.)

for (VARIABLE in SEQUENCE) {

EXPRESSION

}

e.g. Here are canonical sum and product loops. (But use sum() and prod() when you can.)

data = c(2, 3, 5)

total = 0

for (x in data) { # loop through values

total = total + x

cat(sep="", "x=", x, ", total=", total, "\n")

}

product = 1

for (i in seq_len(length(data))) { # loop through indices

product = product * data[i]

cat(sep="", "data[", i, "]=", data[i], ", product=", product, "\n")

}

e.g. Here is one way to find n! (“n factorial”). (But use factorial() when you can.)

baby.factorial = function(n) {

stopifnot(n >= 0)

product = 1

for (i in seq_len(n)) {

product = product * i

}

return(product)

}

baby.factorial(3)

e.g. Here is a non-numeric example.

for (file in list.files()) {

cat(sep="", "file=", file, "\n")

... read file and extract data from it ...

}

Loop zero or more times

This while loop runs EXPRESSION as long as CONDITION is true.

while (CONDITION) {

EXPRESSION

}

e.g. Show progress of an investment receiving annual compound interest as it grows to $100.

balance = 50

interest.rate = 0.07

n.years = 0

while (balance < 100) {

balance = balance * (1 + interest.rate)

n.years = n.years + 1

cat(sep="", "After ", n.years, " years, balance is ", balance, "\n")

}

e.g. Here is a second way to find n! = n(n− 1)(n− 2) · · · (3)(2)(1).

baby.factorial.while = function(n) {

stopifnot(n >= 0)

product = 1

while (n >= 1) {

product = product * n

n = n - 1

}

return(product)

}

baby.factorial.while(3)

Loop one or more times

This loop runs EXPRESSION once and then repeats until CONDITION is true.

repeat {

EXPRESSION

if (CONDITION) {

break

}

}

e.g. Prompt for user input until user cooperates:

repeat {

cat("Please answer 'yes' or 'no':")
decision = scan(what=character(), n=1, quiet=TRUE) # ?scan

if ((decision == "yes") | (decision == "no")) {

break

}

}

Background:

• Loop forever (usually a bad idea):

repeat {

EXPRESSION

}

• Break out of a loop with break, usually guarded by a condition:

if (CONDITION) {

break

}

• Skip to the bottom of a loop (still inside it) with next:

if (CONDITION) {

next

}

Code formatting tips

• “{” does not get a new line

• “}” is on a line by itself, indented like the line containing the corresponding “{”

• code inside braces is indented two spaces

• In RStudio, use “Code > Reindent Lines”

Comments

Note that the while loop is the only one we really need. The other two are for convenience.

• Here’s the for loop for iterating through a known sequence:

for (VARIABLE in SEQUENCE) {

EXPRESSION

}

and here’s how to do (almost) the same thing with while:

i = 1

while (i <= length(SEQUENCE)) {

VARIABLE = SEQUENCE[i]

EXPRESSION

i = i + 1

}

The for version is easier to write and read.

• Here is a repeat loop for running EXPRESSION one or more times:

repeat {

EXPRESSION

if (CONDITION) {

break

}

}

and here is how to do (almost) the same thing with while:

EXPRESSION

while (!CONDITION) {

EXPRESSION

}

The repeat version is better because having two copies of EXPRESSION is hard to maintain.

Example of nested loops

Recall matrix multiplication, in which Cn×p = An×mBm×p, where the element of C in row i and
column j is ci,j =

∑m
k=1 ai,k · bk,j , the dot product of A’s ith row and B’s jth column.

R has a %*% operator for C = AB. Here is a function to do it as an example of nested loops.

matrix.multiply = function(A, B, debug=FALSE) {

a = dim(A)

n = a[1] # Number of rows of A.

m = a[2] # Number of columns of A.

b = dim(B)

stopifnot(m == b[1]) # Otherwise A and B cannot be multiplied.

p = b[2] # Number of columns of B.

C = matrix(data=rep(x=0, times=n*p), nrow=n, ncol=p) # n by p zeros.

for (i in 1:n) { # For each row in C.

if (debug) {

cat(sep="", "i=", i, "\n") # for debugging

}

for (j in 1:p) { # For each column in C.

if (debug) {

cat(sep="", " j=", j, "\n") # for debugging

}

Set C[i, j] to dot product of ith row of A and jth column of B.

for (k in 1:m) {

C[i, j] = C[i, j] + A[i, k] * B[k, j]

if (debug) {

cat(sep="", " C[", i, ", " , j, "]=", C[i, j], "\n") # for debugging

}

}

}

}

return(C)

}

A = matrix(data=1:6, nrow=2, ncol=3)

B = matrix(data=1:6, nrow=3, ncol=2)

A

B

matrix.multiply(A, B)

A %*% B # Does our function give same results as R's operator?

matrix.multiply(A, B, debug=TRUE) # Note debugging output.

