
Optimization

To optimize (or minimize) f(x) : Rn → R is to find x0 ∈ Rn so that f(x0) ≤ f(x) for all x ∈ Rn.

Algorithms

• Use calculus to find an exact solution if you can.

• Golden section search does not require derivatives. See goldenSectionSearch.R to graph
and minimize f(x) = 1

10x
2 − 2 sin(x) over (0, 4). (Also try (−15, 15).)

• Gradient descent requires first partial deriviatives.

Recall from calculus that for a function y = f(x1, . . . , xn), the the gradient of f is defined as

∇f(x1, . . . , xn) =
(

∂y
∂x1

, . . . , ∂y
∂xn

)
. To minimize f by gradient descent, choose an initial point

(x1, . . . , xn) and iteratively move opposite the gradient by iterating on

xi+1 = xi − γ∇f(xi)

where γ is the step size parameter. Note that γ can be adjusted as the algorithm pro-
ceeds; a line search can be used to guarantee convergence for a well-behaved f . e.g. See
gradientDescent.R.

• Newton’s method requires first and second partial derivatives. It is an iterative method for
approximating the roots of a function, finding x such that f(x) = 0. In optimization, Newton’s
method is applied to the derivative function f ′(x) to find x such that f ′(x) = 0, since such an
x is a minimum, maximum, or inflection point. e.g. For the n = 1 case, see Newton.R. (The
n > 1 case requires a Hessian matrix that isn’t introduced in the prerequisites to STAT 305.)

• Nelder-Mead is a heuristic method that does not require derivatives. It evaluates f over a
simplex, a set of n + 1 vertices in n dimensions that is a generalization of a triangle (2 + 1
vertices in 2 dimensions), repeatedly replacing the worst vertex with one computed from the
others. See NelderMead.R.

R functions

• n = 1

optimize(f, interval, ...) minimizes the continuous function f, whose opposite -f is
unimodal, over its first argument over the interval (interval[1], interval[2]), where ...

are additional arguments passed to f. It returns a list containing:

– minimum, the argument that minimizes f

– objective, the value f(minimum)

?optimize says it uses golden section search (with successive parabolic interpolation).

Note: If f is not unimodal, optimize may get stuck at a local minimum.

• n ≥ 1

optim(par, fn, gr=NULL, ..., method=c("Nelder-Mead","BFGS","CG","L-BFGS-B","SANN","Brent"))

minimizes the function fn over its first vector argument, a vector of parameters, starting at
initial values in the vector par, where ... are additional arguments passed to fn. gr, the
gradient of fn, is required for some values of method. optim() returns a list containing:

– par, the parameters that minimize fn

– value, which is f(par)

– convergence, a code with 0 indicating success, 1 indicating an iteration limit was
reached, and other values indicating other trouble

Regarding method,

– "Nelder-Mead", the default, does not require gr.

– "BFGS" approximates Netwon’s method; it requires gr

(– "CG" uses a conjugate gradient method that may be more fragile than "BFGS" but useful
for large problems; it requires gr

– "L-BFGS-B" is a limited-memory variant of "BFGS" that is suitable for large n

– "SANN" uses simulated annealing, a probabilistic heuristic for finding an approximately
optimal solution; it does not require derivatives

– "Brent", useful only for n = 1, just calls optimize; it does not use gr
)

Statistics uses optimization to estimate parameters

Optimization finds those parameter values that make the observed data most likely.

e.g. To find the optimal simple linear regression model of the form ŷ = β̂0 + β̂1x for the data
{(xi, yi) : i = 1, · · · , n}, we find β̂0 and β̂1 that minimize the sum of squared errors,

SSE = SSE
(
β̂0, β̂1; {(xi, yi)}

)
=
∑

e2i =
∑

(yi − ŷi)2 =
∑(

yi − (β̂0 + β̂1xi)
)2

We could use optimization to find the least-squares model, but we already have a closed form
solution from calculus in lm(). In the homework, you’ll use optimization to solve an important
variant that, instead of using least squares, uses least absolute deviations. e.g.

SSE = function(beta, x, y) { # usual least squares

return(sum((y - (beta[1] + beta[2] * x))^2))

}

out = optim(par=c(0, 0), fn=SSE, x=mtcars$wt, y=mtcars$mpg)

m = lm(mpg ~ wt, data=mtcars)

out2 = optim(par=c(0, 0), fn=SSE, x=mtcars$wt, y=mtcars$mpg, control=list(reltol=1e-12))

Try constant model too.

Optimization is a big field. See http://cran.r-project.org/web/views/Optimization.html for
much more.

http://cran.r-project.org/web/views/Optimization.html

