
Testing and Debugging

Tips

• Budget for testing and debugging, which usually take longer than coding.

“The first 90% of the code accounts for
the first 90% of the development time.
The remaining 10% of the code accounts
for the other 90% of the development
time.” –Tom Cargill, Bell Labs

• Find a reliable way to reproduce a bug (after restarting R).

• Shrink test case to a minimum via “binary search:”

– cut data in half: e.g. scan("numbersBug.txt", what=integer())

– cut code in half by, e.g., commenting it out (try it with baby.dbinom.R)

• Write code in small chunks. Save working versions (e.g. hw3.R.22oct1315, or learn git or
other version-control software). Don’t write far past a working version.

• Test code in small chunks. “Test-driven development” calls for coding a function as follows:

– Write tests of a function’s behavior first. Include

∗ typical cases

∗ boundary cases where the behavior changes

∗ special cases, like vectors of length 0 or 1

– Write a “stub” version of the function (e.g. that returns 0 or "" or NULL) and confirm
that it fails the tests.

– Implement function and debug until it passes tests.

Don’t delete passed tests! They’ll be helpful for later bugs.

• Add an “assertion” to stop R if something is FALSE that you expect to be TRUE. Fail early!

– In a test case for a function, you know the return value.

– In a function’s first lines, confirm that arguments are legal.

– In an “if ... elseif ... else” statement’s “else,” confirm the default condition.

stopifnot(...) stops unless each logical expression in ... is TRUE. e.g.

stopifnot(x > 0) # did user give a positive argument as required?

stopifnot(isTRUE(all.equal(magnitude(3, 4), 5)))

... } else { stopifnot((0 <= score) & (score < 60)); grade = "F" ...

• Use descriptive variable names to write “self-documenting” code. Typing now is easier than
figuring out cryptic code later.

• Add comments to explain tricky code.

• Add print statements to display variables, especially function arguments. e.g.

cat(sep="", " how.many(item=", item, ", n.max=", n.max, ")\n")

Retain your best print statements with a debug=FALSE or a verbose=FALSE parameter.

• Simplify code. The only bug-free line of code is .

“Lines of code this week: −2000 ”

–Bill Atkinson, Apple

“One of my most productive days
was throwing away 1000 lines of code.”
–Ken Thompson, Bell Labs (UNIX,
B (=⇒ C), grep)

• Don’t test for equality between two real numbers represented in a computer. Instead, use
isTRUE(all.equal(x, y, tolerance=(.Machine$double.eps ^ 0.5))), which tells whether
the difference between x and y is small. e.g.

49*(1/49) == 1

49*(1/49) - 1

isTRUE(all.equal(49*(1/49), 1))

• Demonstrate and explain your bug to a friend.

• Engage the problem, then get some sleep.

R’s debugging functions

• traceback() prints the call stack, or sequence of function calls, of the last uncaught error.

• A call to browser() in a function (or a click to the left of its line number in RStudio) stops
its execution and starts a browser (“the debugger”) that allows line-by-line execution and
inspection of the program state (e.g. try it with baby.dbinom.R):

– VARIABLE.NAME: print value of variable (or look in Environment tab)

– c: continue (note: RStudio has buttons for most of these commands)

– n: next line (stepping over any function call)

– f: finish current loop or function

– s: step into function call

– where: prints all active function calls

– Q: quit browser and return to top-level prompt

In the browser, to see a variable with one of these names, use print() (or Environment tab).

• debug(fun) causes R to stop in a browser each time the function fun called:

– undebug(fun) causes R to cease stopping in fun

– debugonce(fun) causes R to stop on the next call only

• trace(what, tracer) inserts the code fragment tracer in the function what. e.g.

– trace(what=f, tracer=quote(expression)) runs expression when f is called (quote()
prevents R from evaluating expression before passing it to trace() and f().) e.g.

mean(2 : 4+3)

trace(what=mean, tracer=quote(cat(sep=" ", "x=", x, "\n")))

mean(2 : 4+3)

– untrace(what) removes the tracing code

See https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio

and http://adv-r.had.co.nz/Exceptions-Debugging.html for more.

https://support.rstudio.com/hc/en-us/articles/205612627-Debugging-with-RStudio
http://adv-r.had.co.nz/Exceptions-Debugging.html

