Group work: review

Consider the function

$$z = f(x,y) = \left(1 - \frac{x}{k}\right)\left(1 + \frac{x}{k}\right)\left(1 - \frac{y}{k}\right)\left(1 + \frac{y}{k}\right)\left[-(y+47)\sin\left(\sqrt{\left|y + \frac{x}{2} + 47\right|}\right) - x\sin\left(\sqrt{\left|x - (y+47)\right|}\right)\right]$$

over the region -k < x < k and -k < y < k, where k = 120.

(See http://www.stat.wisc.edu/~jgillett/305/f.R for code for f().)

Answer as many of these questions as you can during the available class time:

- Graph f. Hint: Try persp3d in package rgl to make a graph you can rotate. (If rgl doesn't work for your Mac, try installing XQuartz from https://www.xquartz.org. If that fails, try ?persp and see gradientDescent.R from the first week.)
- Find a local maximum and mark it with a red dot. Hint: Try points3d in package rgl. (If rgl doesn't work, try points(trans3d(...)) as in ?persp's examples.)
- Find other local maxima and mark each with a red dot.
- Find the global maximum and mark it with a green dot.
- Find n, the number of distinct local maxima.
- Speed up your program.
 - Profile your code. Where is the program spending its time?
 - Make your program faster:
 - * Consider ideas from 5profile.pdf
 - * See 6multicore.pdf and use parallel to make your code use all your laptop's CPUs
 - * See 7Rcpp.pdf and use Rcpp to implement the bottleneck code in C++

Time your code before and after each change to ensure that it's really an improvement. Which improvement helped most?

What to turn in

Please submit one ".R" file including, near the top, a line like this for each group member:

"Last name, First name" <NetID@wisc.edu>

(Note that we can't use a ".Rmd" file because the HTML output of KnitHTML doesn't allow the interactive rgl graph we want to use to see f's maxima.)