1 Introduction¹

Machine learning uses data examples to predict a label or value for a ______example.

Supervised vs. Unsupervised Learning

• In supervised learning, the dataset is a collection of labeled examples $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$, where $\mathbf{x}_i = \begin{bmatrix} x_1^{(i)}, \dots, x_D^{(i)} \end{bmatrix}$ is a *D*-dimensional feature vector.

e.g. Here are data with $N = _$ and $D = _$ from three kids of $\{(\mathbf{x}_i = [height, weight], y_i = age)\}$:

	height	weight	age
1	44	70	7
2	45	75	9
3	38	40	4

We create a model to map new examples to suitable labels, e.g.:

- A support vector machine (SVM) is a _____ classifier that uses a line to separate points in a plane into two groups (or it separates *D*-dimensional points with a (D-1)-dimensional hyperplane). e.g.²

- Linear regression predicts a label given an unlabeled example as $y \leftarrow f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}\mathbf{x} + b$ for scalar y, vector \mathbf{x} , and parameter vector \mathbf{w} . e.g.

¹These notes are based on Andriy Burkov's "The Hundred-Page Machine Learning Book" (http://themlbook.com). ²from https://scikit-learn.org/stable/modules/svm.html and

https://scikit-learn.org/stable/_images/sphx_glr_plot_ols_001.png

- A decision tree is a directed acyclic graph that we use like a ______ to make a decision. At each node, if the value of some feature j is less than a ______, the left branch is followed; otherwise the right branch is followed. e.g.⁴

³first plot is from https://scikit-learn.org/stable/_images/sphx_glr_plot_logistic_001.png ⁴from https://scikit-learn.org/stable/_images/iris.svg

- k-nearest neighbors (k-NN) classification assigns a new **x** the ______ label among its _____ nearest neighbors. k-NN regression assigns **x** the ______ value among its k nearest neighbors. e.g.

- In unsupervised learning, the dataset is a collection of ______ examples $\{\mathbf{x}_i\}_{i=1}^N$ and we infer a function on \mathbf{x} to solve a problem or find hidden structure in $\{\mathbf{x}_i\}$. e.g.:
 - Density estimation models the probability density function of the (_____) distribution from which data were drawn. e.g.⁵

⁵from https://scikit-learn.org/stable/_images/sphx_glr_plot_kde_1d_001.png

- Dimensionality reduction maps x into a vector with ______ to remove ______ features, reduce ______, _____ data (since we can only see up to 3D), and facilitate simple interpretable models.
- Outlier detection quantifies how far **x** is from from _____ examples. e.g.⁷

Novelty Detection

⁶from https://scikit-learn.org/stable/_images/sphx_glr_plot_dbscan_001.png and https://scikit-learn.org/stable/_images/sphx_glr_plot_digits_classification_001.png and https://scikit-learn.org/stable/_images/sphx_glr_plot_kmeans_digits_001.png

⁷ from https://scikit-learn.org/stable/_images/sphx_glr_plot_oneclass_001.png

Support Vector Machine (SVM): The Linear Model

- A hyperplane in a D-dimensional space is a (D 1)-dimensional space. e.g. A hyperplane is a ______ in 1D, a ______ in 2D, and a ______ in 3D.
- SVM using a *linear model* finds a hyperplane *decision boundary* specified by $\mathbf{wx} + b = 0$ that separates label +1 examples from label -1 examples.⁸ (Note: $\mathbf{wx} = w^{(1)}x^{(1)} + \ldots + w^{(D)}x^{(D)}$.)
- Training learns optimal values \mathbf{w}^* and b^* .
- The SVM labels a new **x** with $y = f(\mathbf{x}) =$ $(\mathbf{w}^*\mathbf{x} + b^*) \in \{-1, 1\}$.
- In the easiest hard margin SVM case where the two labeled subsets are linearly separable,⁹ training consists of minimizing Euclidean norm $||\mathbf{w}|| = \sqrt{\sum_{i=1}^{D} (w^{(i)})^2}$ subject to constraints

 $\begin{cases} \mathbf{w}\mathbf{x}_i + b \ge 1 & \text{if } y_i = +1 \\ \mathbf{w}\mathbf{x}_i + b \le -1 & \text{if } y_i = -1 \end{cases}, \text{ or equivalently subject to } y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1, \text{ for } i = 1, \dots, N. \end{cases}$

(We omit the details of this constrained optimization problem.)

• Here we find the distance between the constraint boundaries.

The parallel hyperplanes $\mathbf{wx} + b = 1$ and $\mathbf{wx} + b = -1$ have normal vector _____. Let \mathbf{x}_1 be any point in the first hyperplane. The normal line through \mathbf{x}_1 is $\mathbf{x}_1 + \mathbf{w}t$ for $t \in \mathbb{R}$. It intersects the second hyperplane when

- $||\mathbf{w}||$ is in the denominator of the distance, so minimizing $||\mathbf{w}||$ ______ the margin between +1 and -1 support vectors.
- A sample on either of the constraint/margin boundaries is called a ______ vector.

Coming in §3:

- An SVM can have a *hyperparameter* (parameter controlling learning; not trained) to penalize misclassification of outliers (positives on the negative side of the boundary or negatives on the positive side).
- An SVM can include a *kernel* that allows a ______ decision boundary.

⁸Burkov uses $\mathbf{wx} - b = 0$. I use $\mathbf{wx} + b = 0$ to match scikit-learn.

⁹We return to SVMs in §3 to address some harder cases.

Python

- from sklearn import svm loads the svm module
- clf = svm.SVC(kernel='linear', C=1) gives a SVM support vector classification model. (A large C, like C=1000, gives ≈ the hard-margin version above; we will explore C more in §3.)
- clf.fit(X, y) fits the model to $X_{N \times D}$ and $y_{N \times 1}$.¹⁰
- clf.coef_ gives \mathbf{w}^* and clf.intercept_ gives b^*
- clf.predict(X) does classification on examples in X
- clf.score(X, y) gives the average accuracy on X with respect to y

To learn more:

- User guide: https://scikit-learn.org/stable/modules/svm.html
- Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

• Example:

https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html

¹⁰In the code, X is 2D while y is 1D.