3 Fundamental Algorithms (part 4 of 5)

Support Vector Machine (SVM)

Recall from §1: hard-margin SVM

- A hard margin support vector machine (SVM) addresses the case where binary-labeled subsets of examples \{(x_i, y_i)\}_{i=1}^{N} are.
- It finds a linear decision hyperplane \(wx + b = 0\) (center of a road) that separates +1 examples from −1 examples by minimizing \(|w|\) subject to \(y_i(wx_i + b) \geq 1\) for \(i = 1, \ldots, N\).
- Minimizing \(|w|\) maximizes \(\frac{2}{|w|}\), the distance from the +1 margin \(wx_i + b = 1\) (one edge of road) to the −1 margin \(wx_i + b = -1\) (other edge).

Two problems and §3 solutions (below):

- Outlying examples may violate the boundary (noise):
 A soft margin SVM can include a hyperparameter (parameter controlling learning; not trained) that penalizes misclassification of (positives on the negative side of the boundary or negatives on the positive side).
- For some data, the +1 and −1 examples cannot be separated by a hyperplane but could be separated by a polynomial or other boundary: an SVM can include a kernel that allows a nonlinear decision boundary.

1 Recall: Burkov uses \(wx - b = 0\). I use \(wx + b = 0\) to match scikit-learn.

2 Burkov and the user guide (linked below) use \(y \in \{-1, 1\}\). scikit-learn seems also to allow \(y \in \{0, 1\}\).
Soft Margin SVM

To handle noise, use the hinge loss, \(\max(0, 1 - y_i(wx_i + b)) = \begin{cases}
0, & \text{if constraint } y_i(wx_i + b) \geq 1 \text{ is proportional to distance from constraint edge, otherwise} \\
\end{cases} \)

e.g. Here are a few typical hinge losses (pictured for \(w = 1, b = 0 \)):

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above the (wx + b = 1) margin (so (wx + b > 1))</td>
<td>(constraint satisfied)</td>
</tr>
<tr>
<td>On the (wx + b = 1) margin</td>
<td>(constraint just satisfied)</td>
</tr>
<tr>
<td>On the (wx + b = 0) decision boundary</td>
<td>(constraint failed; neutral decision)</td>
</tr>
<tr>
<td>On the (wx + b = -1) margin</td>
<td>(wrong decision)</td>
</tr>
<tr>
<td>Below the (wx + b = -1) margin (so (wx + b < -1))</td>
<td>(wrong decision)</td>
</tr>
</tbody>
</table>

Hard margin SVM’s minimizing \(||w|| \) is equivalent to minimizing \(\frac{1}{2}||w||^2 \).

To get a soft margin SVM, we minimize the cost function

\[
\frac{1}{2}||w||^2 + C \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(wx_i + b))
\]

where hyperparameter \(C \) decides the tradeoff between the separation between +1 and -1 examples and ensuring that each \(x_i \) is on the correct side.

- Increasing \(C \) yields a smaller margin and classifies examples better.
- Decreasing \(C \) yields a larger margin suited to noisy data, making more errors on training examples but generalizing better to new examples.

Nonlinear Boundary

- For a nonlinear boundary, we may be able to use some \(\phi : x \mapsto \phi(x) \) to transform the feature space into a higher-dimension space in which we can make a linear separation.

e.g. In the right-hand figure above, the concentric red and blue rings are not linearly separable. However, we can use \(\phi(x) = \phi(p, q) = (p^2, \sqrt{2}pq, q^2) \) to map each 2D point to a point:

\[3\]Burkov puts the \(C \) on the \(\frac{1}{2}||w||^2 \) term. I put it on the hinge loss term to match scikit-learn.
In 3D, the red and blue points are linearly separable by a plane. Transforming data and trying several $\phi(x)$ functions while seeking linear separation in a higher dimension can be computationally expensive. Using a function to make a transformation implicitly is called the kernel trick and can be much less expensive. It facilitates a nonlinear boundary in the original feature space.

SVM’s (hard-margin) minimization is implemented with the help of Lagrange multipliers, finding $\max_{\alpha_1, \ldots, \alpha_N} \left(\sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{k=1}^{N} y_i \alpha_i (x_i x_k) y_k \alpha_k \right)$ subject to $\sum_{i=1}^{N} \alpha_i y_i = 0$ and $\alpha_i \geq 0$ for $i = 1, \ldots, N$, which can be done with a quadratic programming algorithm. Here the feature vectors appear only as $x_i x_k$.

• Instead of finding $\phi(x_i)$ and $\phi(x_k)$ and then $\phi(x_i) \phi(x_k)$ (expensive), we can use some kernel function $k(x_i, x_k)$ that is a function only of x_i and x_k (untransformed) and gives the same result, with no explicit application of $\phi()$ necessary.

e.g. Instead of mapping x_i to $\phi(x_i) = (p_i^2, \sqrt{2}p_iq_i, q_i^2)$ and x_k to $\phi(x_k) = (p_k^2, \sqrt{2}p_kq_k, q_k^2)$ and then finding their 3D dot product $x_i x_k = p_i^2 p_k^2 + 2p_i p_k q_i q_k + q_i^2 q_k^2$, we can find the 2D dot product $p_i p_k + q_i q_k$ and square it to get the same result. This is an example of the kernel trick using a quadratic kernel $k(x_i, x_k) = (x_i x_k)^2$.

The most widely used of the many kernel functions is the radial basis function (RBF) kernel,

\[
k(x, x') = \exp \left(-\frac{\|x - x'\|^2}{2\sigma^2} \right) \quad \text{(Burkov’s notation)}
= \exp \left(-\gamma \|x - x'\|^2 \right) \quad \text{(scikit-learn’s notation, with } \gamma > 0),
\]

where the fraction’s numerator is the squared Euclidean distance between the two vectors. Burkov asserts the space for the RBF kernel has dimensions. Varying the hyperparameter $\gamma = \frac{1}{2\sigma^2}$ chooses between a smooth or curvy boundary in the original feature space.
Python

- from sklearn import svm (as in §01)
- clf = svm.SVC(kernel='linear', C=1) (as in §01)

High C gives a hard-margin SVM (as in §01). Low C allows a larger margin on noisy data. Start with the default $C = 1$. Decrease to better from noisy data. Increase for a narrower margin and better performance.

- clf = svm.SVC(kernel="rbf", C=1, gamma='scale') uses the (RBF) kernel trick to allow a nonlinear decision boundary in the feature space.
 - gamma='scale' uses $\gamma = \frac{1}{D \cdot X.\text{var}()}$
 - gamma='auto' uses $\gamma = \frac{1}{D}$
 - or set gamma to a float

The user guide says “gamma defines how much influence a single training example has. The larger gamma is, the closer other examples must be to be affected.” A larger gamma allows more boundary curvature and more of training data.

- clf.fit(X, y) fits the model to array $X_{N \times D}$ and $y_{N \times 1}$ (as in §1)
- clf.coef_ gives w^* and clf.intercept_ gives b^* (as in §1)
- clf.predict(X) does classification on examples in X (as in §1)
- clf.predict_proba(X)[:, 1] gives probabilities $\{P(y_i = 1)\}$ ($[:, 0]$ gives $\{P(y_i = 0)\}$)
- clf.score(X, y) gives the average accuracy on X with respect to y (as in §1)

To learn more:

- Advice on setting C and gamma for a nonlinear boundary is at https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
- The kernel trick is described at https://en.wikipedia.org/wiki/Kernel_method

4The guide says SVM is not scale invariant, so we should scale each feature to $[0, 1]$ or $[-1, 1]$ or standardize each feature to have mean 0 and variance 1. We will discuss scaling in §05.