
3 Fundamental Algorithms (part 3 of 5): Decision Trees

A decision tree is a directed acyclic graph like a flowchart used to decide y = 0 or y = 1 from x for
classification or to model y ∈ R as a function of x for regression.

� To use a tree, at each node, if the value of some feature j is less than a threshold, the left
branch is followed; otherwise the right branch is followed. (See the figure below.)

� To build a tree, at each node, we choose the feature and threshold on which to split by
minimizing the a cost associated with the split (below).

Decision Tree Classification

Information Content and Entropy

The information content, also known as self-information and surprisal, of an outcome x of a
random variable X is I(x) = log2

1
P (x) = − log2 P (x), where P (x) = P (X = x) quantifies the level

of surprise at seeing x (in bits).

e.g. Draw log2 p and − log2 p for probability p ∈ (0, 1]:

� P (x) = 1 =⇒ I(x) =

� P (x) = 1
2 =⇒ I(x) =

� P (x) = ϵ, where ϵ is small =⇒ I(x) =

The entropy of a random variable X with possible outcomes x1, . . . , xn, a measure of uncertainty
of X, is the expected value (weighted average) information content in bits given by its outcome:

H(X) = expected value of I(X) =
n∑

i=1

P (xi) [− log2 P (xi)]

e.g.

� For a fair coin flip X with outcomes 0 and 1 (tails and heads) whose probabilities are 1
2 and

1
2 , H(X) =

� For an unfair coin flip Xusually heads with outcomes 0 and 1 whose probabilities are 1
100 and

99
100 , H(Xusually heads) =

� For an unfair coin flip Xalways heads with outcomes 0 and 1 whose probabilities are 0 and 1 (so
both sides are heads), H(Xalways heads) =

Note: Equiprobable outcomes maximize entropy, while a constant variable minimizes entropy.

� For the sum Y of two fair coin flips with outcomes 0, 1, and 2 whose probabilities are 1
4 ,

1
2 ,

and 1
4 , H(Y ) =

� For the outcome Z of two fair coin flips with outcomes (0, 0), (0, 1), (1, 0) and (1, 1), whose
probabilities are all 1

4 , H(Z) =

1



Learning a Classification Tree with the ID3 algorithm1

Let S be a set of training examples {(x, y)}, where each y ∈ {0, 1}. The start node contains S and
yields a constant model for P (y = 1|x):

fID3(S) = ŷS = ȳS =
1

|S|
∑

(x,y)∈S

y ,

the average of the y values in S (for classification, it is also the proportion of 1 values).2

The entropy of a set of examples S is the entropy of a random draw from S:

H(S) =
∑

y∈{0,1}

P (y) [− log2 P (y)]

= P (0) [− log2 P (0)] + P (1) [− log2 P (1)]

= [1− P (1)] (− log2 [1− P (1)]) + P (1) [− log2 P (1)]

= −fID3(S) log2 fID3(S)− [1− fID3(S)] log2 [1− fID3(S)]

e.g. Confirm the entropy of a few nodes from the tree below.

To branch from a node containing S, consider all features j = 1, . . . , D and thresholds t that par-
tition S into two subsets S− = {(x, y) ∈ S|x(j) ≤ t} and its complement S+ = {(x, y) ∈ S|x(j) > t}
that make two new child nodes; choose the best pair (j, t).3

For ID3, the best subset pair is the one that minimizes the weighted average entropy of the split:

H(S−, S+) =
|S−|
|S|

H(S−) +
|S+|
|S|

H(S+)

We stop at a leaf if any of these are true:

� All examples in the leaf are classified correctly by the constant model.

� We cannot find a feature upon which to split.

� The split reduces entropy less than some ϵ.

� The tree has reached some maximum depth d.

ϵ and d are hyperparameters that we set experimentally.

1There are several other decision tree algorithms; some can handle yi ∈ Z and categorical yi.
2Burkov’s notation for fID3(S) is f

S
ID3.

3Burkov uses < in S− and ≥ in S+. I use ≤ in S− and > in S+ to match scikit-learn.

2



A note on context (optional)

Burkov asserts that this algorithm approximately maximizes the average log-likelihood:

1

N

N∑
i=1

[yi ln fID3(xi) + (1− yi) ln (1− fID3(xi))] .

� In logistic regression fw∗,b∗ was the optimal solution for its parametric model.

� ID3 approximates a solution by building a nonparameteric model fID3(x) = P (y = 1|x).
It does not look ahead when branching, so it finds only a local maximium.

The most widely-used decision tree uses C4.5, an extension of ID3, which

� accepts continuous and discrete features

� handles incomplete examples

� addresses overfitting by bottom-up pruning

Python

� from sklearn.tree import DecisionTreeClassifier:

– clf = DecisionTreeClassifier(criterion='entropy', max_depth=None,

min_impurity_decrease=0)

(d = max_depth, ϵ = min_impurity_decrease)

– clf.fit(X, y) fits the classifier to array XN×D and yN×1

– clf.predict_proba(X)[:, 1] gives probabilities {P (yi = 1)} ([:, 0] gives {P (yi = 0)})
– clf.predict(X) uses a decision threshold to give predictions {ŷi} for examples in X

– clf.score(X, y) gives the average accuracy on X with respect to y

� from sklearn import tree:

– tree.plot_tree(clf, feature_names=None, filled=True)makes a graph of the tree

� from sklearn.tree import export_text:

– print(export_text(clf, feature_names=None)) prints the tree as plain text

To learn more:

� User guide: https://scikit-learn.org/stable/modules/tree.html

� Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

� Examples are at the bottom of the manual page.
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Decision Tree Regression

If y ∈ R, we can use a decision tree for regression. The prediction at a node containing S is
ŷS = ȳS = 1

|S|
∑

(x,y)∈S y. To branch from a node, consider all features j = 1, . . . , D and thresholds
t that partition S into S− and S+ as before. The best subset pair is the one that minimizes the
squared error associated with the split:

∑
(x,y)∈S−

(y − ȳS−)
2 +

∑
(x,y)∈S+

(y − ȳS+)
2

where ȳS− and ȳS+ are the means of the y values in ȳS− and ȳS+ , respectively.

Python

� from sklearn.tree import DecisionTreeRegressor:

– model = DecisionTreeRegressor(criterion='squared_error', max_depth=None)

– model.score(X, y) gives R2 (proportion of variability in y accounted for by X)

To learn more:

� Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
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