3 Fundamental Algorithms (part 3 of 5): Decision Trees

A decision tree is a directed acyclic graph like a flowchart used to decide $y = 0$ or $y = 1$ from x for classification or to model $y \in \mathbb{R}$ as a function of **x** for regression.

- \bullet To use a tree, at each node, if the value of some feature j is less than a threshold, the left branch is followed; otherwise the right branch is followed. (See the figure below.)
- To build a tree, at each node, we choose the feature and threshold on which to split by minimizing the a cost associated with the split (below).

Decision Tree Classification

Information Content and Entropy

The *information content*, also known as *self-information* and *surprisal*, of an outcome x of a random variable X is $I(x) = \log_2 \frac{1}{P(x)} = -\log_2 P(x)$, where $P(x) = P(X = x)$ quantifies the level of surprise at seeing x (in bits).

e.g. Draw $\log_2 p$ and $-\log_2 p$ for probability $p \in (0,1]$:

- $P(x) = 1 \implies I(x) =$
- $P(x) = \frac{1}{2} \implies I(x) =$
- $P(x) = \epsilon$, where ϵ is small $\implies I(x) =$

The entropy of a random variable X with possible outcomes x_1, \ldots, x_n , a measure of uncertainty of X , is the expected value (weighted average) information content in *bits* given by its outcome:

$$
H(X) = \text{ expected value of } I(X) = \sum_{i=1}^{n} P(x_i) \left[-\log_2 P(x_i) \right]
$$

e.g.

- For a fair coin flip X with outcomes 0 and 1 (tails and heads) whose probabilities are $\frac{1}{2}$ and 1 $\frac{1}{2}$, $H(X) =$
- For an unfair coin flip $X_{\text{usually heads}}$ with outcomes 0 and 1 whose probabilities are $\frac{1}{100}$ and $\frac{99}{100}$, $H(X_{\text{usually heads}})$ =
- For an unfair coin flip $X_{\text{always heads}}$ with outcomes 0 and 1 whose probabilities are 0 and 1 (so both sides are heads), $H(X_{\text{always heads}}) = _$
	- Note: Equiprobable outcomes maximize entropy, while a constant variable minimizes entropy.
- For the sum Y of two fair coin flips with outcomes 0, 1, and 2 whose probabilities are $\frac{1}{4}$, $\frac{1}{2}$ $\frac{1}{2}$, and $\frac{1}{4}$, $H(Y)$ =
- For the outcome Z of two fair coin flips with outcomes $(0, 0)$, $(0, 1)$, $(1, 0)$ and $(1, 1)$, whose probabilities are all $\frac{1}{4}$, $H(Z)$ =

Learning a Classification Tree with the ID3 algorithm^{[1](#page-1-0)}

Let S be a set of training examples $\{(\mathbf{x}, y)\}\,$, where each $y \in \{0, 1\}\,$. The start node contains S and yields a constant model for $P(y = 1|\mathbf{x})$:

$$
f_{ID3}(S) = \hat{y}_S = \bar{y}_S = \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} y,
$$

the average of the y values in S (for classification, it is also the proportion of 1 values).^{[2](#page-1-1)}

The *entropy* of a set of examples S is the entropy of a random draw from S :

$$
H(S) = \sum_{y \in \{0,1\}} P(y) \left[-\log_2 P(y) \right]
$$

= $P(0) \left[-\log_2 P(0) \right] + P(1) \left[-\log_2 P(1) \right]$
= $[1 - P(1)] \left(-\log_2 [1 - P(1)] \right) + P(1) \left[-\log_2 P(1) \right]$
= $-f_{ID3}(S) \log_2 f_{ID3}(S) - [1 - f_{ID3}(S)] \log_2 [1 - f_{ID3}(S)]$

e.g. Confirm the entropy of a few nodes from the tree below.

To branch from a node containing S, consider all features $j = 1, \ldots, D$ and thresholds t that partition S into two subsets $S_ = \{(\mathbf{x}, y) \in S | x^{(j)} \le t\}$ and its complement $S_+ = \{(\mathbf{x}, y) \in S | x^{(j)} > t\}$ that make two new child nodes; choose the best pair (j, t) .^{[3](#page-1-2)}

For ID3, the best subset pair is the one that minimizes the weighted average entropy of the split:

$$
H(S_-, S_+) = \frac{|S_-|}{|S|} H(S_-) + \frac{|S_+|}{|S|} H(S_+)
$$

We stop at a leaf if any of these are true:

- All examples in the leaf are classified correctly by the constant model.
- We cannot find a feature upon which to split.
- The split reduces entropy less than some ϵ .
- \bullet The tree has reached some maximum depth d .

 ϵ and d are hyperparameters that we set experimentally.

¹There are several other decision tree algorithms; some can handle $y_i \in \mathbb{Z}$ and categorical y_i .

²Burkov's notation for $f_{ID3}(S)$ is f_{ID3}^S .

³Burkov uses \lt in $S_-\$ and \geq in S_+ . I use \leq in $S_-\$ and $>$ in S_+ to match scikit-learn.

A note on context (optional)

Burkov asserts that this algorithm approximately maximizes the average log-likelihood:

$$
\frac{1}{N}\sum_{i=1}^{N} [y_i \ln f_{ID3}(\mathbf{x}_i) + (1 - y_i) \ln (1 - f_{ID3}(\mathbf{x}_i))].
$$

- In logistic regression $f_{\mathbf{w}^*,b^*}$ was the optimal solution for its *parametric model*.
- ID3 approximates a solution by building a nonparameteric model $f_{ID3}(\mathbf{x}) = P(y = 1|\mathbf{x})$. It does not look ahead when branching, so it finds only a local maximium.

The most widely-used decision tree uses $C₄$.5, an extension of ID3, which

- accepts continuous and discrete features
- handles incomplete examples
- \bullet addresses overfitting by bottom-up *pruning*

Python

- **•** from sklearn.tree import DecisionTreeClassifier:
	- clf = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_impurity_decrease=0)
		- $(d = max_depth, \epsilon = min_impurity_decrease)$
	- clf.fit(X, y) fits the classifier to array $X_{N\times D}$ and $y_{N\times 1}$
	- clf.predict_proba(X)[:, 1] gives probabilities $\{P(y_i = 1)\}$ ([:, 0] gives $\{P(y_i = 0)\}\$)
	- clf.predict(X) uses a decision threshold to give predictions $\{\hat{y}_i\}$ for examples in X
	- clf.score(X, y) gives the average accuracy on X with respect to y
- **•** from sklearn import tree:
	- tree.plot_tree(clf, feature_names=None, filled=True) makes a graph of the tree
- from sklearn.tree import export_text:
	- print(export_text(clf, feature_names=None)) prints the tree as plain text

To learn more:

- User guide: <https://scikit-learn.org/stable/modules/tree.html>
- Reference manual:
	- <https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html>
- Examples are at the bottom of the manual page.

Decision Tree Regression

If $y \in \mathbb{R}$, we can use a decision tree for regression. The prediction at a node containing S is $\hat{y}_S = \bar{y}_S = \frac{1}{|S|}$ $\frac{1}{|S|}\sum_{(\mathbf{x},y)\in S} y$. To branch from a node, consider all features $j=1,\ldots,D$ and thresholds t that partition S into S_+ and S_+ as before. The best subset pair is the one that minimizes the squared error associated with the split:

$$
\sum_{(\mathbf{x},y)\in S_-} (y - \bar{y}_{S_-})^2 + \sum_{(\mathbf{x},y)\in S_+} (y - \bar{y}_{S_+})^2
$$

where \bar{y}_{S-} and \bar{y}_{S+} are the means of the y values in \bar{y}_{S-} and \bar{y}_{S+} , respectively.

Python

- from sklearn.tree import DecisionTreeRegressor:
	- model = DecisionTreeRegressor(criterion='squared_error', max_depth=None)
	- model.score(X, y) gives R^2 (proportion of variability in y accounted for by X)

To learn more:

Reference manual:

<https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html>