3 Fundamental Algorithms (part 5 of 5)

k-Nearest Neighbors (kNN)

Training in k-NN consists only of storing the training data.

- **k-NN classification** assigns to a new \(\mathbf{x} \) the ________ label among its \(k \) nearest neighbors.
- **k-NN regression** assigns to a new \(\mathbf{x} \) the ________ numeric value of its \(k \) nearest neighbors.

Distance metrics

Euclidean distance is the typical metric. Others may be worth exploring. For two vectors \(\mathbf{a} \) and \(\mathbf{b} \),

- **Euclidean** distance(\(\mathbf{a}, \mathbf{b} \)) = \(\sqrt{\sum_{i=1}^{D} (a^{(i)} - b^{(i)})^2} \) (also called the 2-norm)

e.g. This is the familiar length of the line segment joining two points.
- **Manhattan** distance(\(\mathbf{a}, \mathbf{b} \)) = \(\sum_{i=1}^{D} |a^{(i)} - b^{(i)}| \) (also called the 1-norm or absolute-value norm or taxicab distance)

e.g. This is the ________ in blocks between two points on a square grid street layout.
- **Minkowski** distance(\(\mathbf{a}, \mathbf{b} \)) = \(\left(\sum_{i=1}^{D} |a^{(i)} - b^{(i)}|^{p} \right)^{\frac{1}{p}} \) for integer \(p \). \(p = \) _______: Manhattan; \(p = \) _______: Euclidean; \(p = \) _______: \(\max(\{|a_i - b_i|\}) \); \(p = \) _______: \(\min(\{|a_i - b_i|\}) \).
- **Negative cosine similarity** \(^1 \) distance(\(\mathbf{a}, \mathbf{b} \)) = \(-\cos \angle(\mathbf{a}, \mathbf{b}) = -\frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{a}|| \cdot ||\mathbf{b}||} = -\frac{\sum_{i=1}^{D} a^{(i)} b^{(i)}}{\sqrt{\sum_{i=1}^{D} (a^{(i)})^2} \sqrt{\sum_{i=1}^{D} (b^{(i)})^2}} \)

e.g. In information retrieval, give each word in an \(n \)-word dictionary its own coordinate in \(n \)D space. Make a vector of word counts for each document. Then \(\cos \angle(\mathbf{a}, \mathbf{b}) \) for documents \(\mathbf{a} \) and \(\mathbf{b} \) measures ________ without regard for document length, so \(-\cos \angle(\mathbf{a}, \mathbf{b}) \) measures topical “distance”.
- **Hamming** distance(\(\mathbf{a}, \mathbf{b} \)), for two equal-length strings \(\mathbf{a} \) and \(\mathbf{b} \), is the is the ________ at which the corresponding characters are different.

e.g. Hamming distance could be used in a spell-checker.

e.g. In information theory, Hamming distance is the minimum number of errors that could account for transmitting bit sequence \(\mathbf{a} \) but receiving \(\mathbf{b} \).

Both \(k \) and the choice of metric are hyperparameters set before running k-NN.

\(^1\)Replacing \(\mathbf{a} \) and \(\mathbf{b} \) with \(\mathbf{a} - \bar{a} \) and \(\mathbf{b} - \bar{b} \) yields the **negative centered cosine similarity**, which is equivalent to \(-r \).
Normalization

Normalization or rescaling is necessary if the features have different units or scales (coming in §5).

E.g. Consider the distance of points from (0, 0). If \(x \) and \(y \) are each uniformly distributed, \(x \) in [0, 1] and \(y \) in [0, 0.01] (draw _), then the \(y \) values would hardly influence the distance. They could matter if we rescaled them (e.g. by \(y \mapsto y \times 100 \) so that they would span [0, 1]).

Weighted \(k \)-NN

E.g. Weighting each of a new point’s \(k \) nearest neighbors by ______, where \(d_i \) is the distance to the \(i \)th nearest neighbor, would make near neighbors ________________________ than distant ones.

Python

```python
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neighbors import KNeighborsRegressor

clf = KNeighborsClassifier(n_neighbors=5, weights='uniform', p=2, metric='minkowski')
The default \( p=2, \) metric='minkowski' give Euclidean distance. metric options include 'euclidean', 'manhattan', and 'minkowski' for vectors in \( \mathbb{R}^D \); 'hamming' for vectors in \( \mathbb{Z}^D \); and a user-defined function that takes two 1D NumPy arrays and returns a distance.

weights='uniform' gives unweighted \( k \)-NN. weights='distance' uses weights \( \left\{ \frac{1}{d_i} \right\} \) (above).

clf = KNeighborsRegressor(n_neighbors=5)
clf.fit(X, y) fits the model to array \( X \times_D \) and \( y \times_1 \)
clf.predict(X) does classification or regression on examples in \( X \)

classification:
- clfr.predict_proba(X)[:, 1] gives \( P(y_i = 1) \) \( [:, 0] \) gives \( P(y_i = 0) \)
- clfr.score(X, y) gives the average accuracy on \( X \) with respect to \( y \)

regression: clfr.score(X, y) gives \( R^2 \), the coefficient of determination
```

To learn more:

- Reference manual: