4 Anatomy of a Learning Algorithm

Each learning algorithm has three parts:

® a

for one training example, often a function of the difference

between estimated and actual label y associated with feature vector x

® a

over all training examples

® an

providing an optimization criterion; often an average loss

that uses training data to satisfy the optimization criterion

e.g. Recall the loss and cost for the algorithms we saw in §3:

Algorithm | Loss for (x,y) Cost for {(x;,v:)}Y,
Linear squared error N
regression [fwp(x) — y)? MSEyw , = Z Jwp(xi) — y]?
Logistic negative log likelihood (regularized) B N
_ 1 v s
regression | —In (fva()? (L= fwa(') | GIWIP+ €= 30 In (fualoe)? [1 = Sl 7“”)]
i=1
hinge loss (regularized) 1 | N
2
SVM max (0,1 — y(wx + b)) §||w|] +C’N§max(0,l —yi(wx; + b))
Decision negative log likelihood N
tred —1n f1p3(x)? [1 — frps(x)]' ™Y Z yiln frps(xi) + (1 —) In (1 — frps(xi))]
ENN/

“Recall: Burkov says ID3 approximately minimizizes —In Lw .
YKNN does not easily fit this table.

When we do not have a closed-form solution for minimizing the cost, we use a numerical optimization
method like gradient descent (below)ﬂ

We want to minimize MSEyw 5 or —In Ly, or SVM’s cost function over w and b. However, I present gradient
descent from a mathematical and graphical perspective in which we minimize over x (which in this context does not

refer to our feature vector) or over (z,

y). Alas, I haven’t figured out effortless notation.

Gradient Descent

Gradient descent iteratively steps the
direction of and proportional to the of the Gradiept descant
gradient of a function to seek a local minimum. / N AT,

> ™,
/\ ol >/>\ —— —ajaflax, affay)

Recall: For differentiable z = f(x), where x = (z1, ..., %),
the the gradient of f is Vf(x1,...,2,) = (%,...,%).
To minimize f by gradient descent, choose an initial point
(21,...,xy,) and iteratively move opposite the gradient by

iterating on

Xi+1 =

where « is the learning rate controlling step size.

Many improvements are possible. e.g.
e Decrease « at each step.

e Set « locally optimally at each step via a line search,
guaranteeing convergence for a well-behaved f.

Starting at a random point, gradient descent finds a local
minimum of f.

z = f(x) is convez if the line segment between any two points on its graph is not below the graph.
If fis convexﬂ gradient descent can find its global minimum.

e.g. Minimize f(z) = 22 starting at 2 = —2 with a = 1. Repeat with a = %.

e.g. Run gradient descent with o = 0.4 to minimize z = f(z,y) = 22 + y? — 62 — 4y + 13. Start at
(0,0) and find the next two points on the descent path.

Vi y) = (55 5) = ,)
i x; = (2, 9:) V f(xi, yi) —aVf(zi,yi)
0] (0,0)
1
2

2Tt will find the global minimum if additionally V f is Lipschitz continuous and ~ is chosen by a good line search.

Stochastic Gradient Descent

We can use gradient descent (or a variant) to minimize the cost functions for linear regression,
logistic regression, and a support vector machine.

2

Note the average loss “# Zf\i 1 --- over the N training examples in these cost functions:

N
. . e 1
e linear regression: minimize MSEy, ; = N z_: fwp(Xi) yi]Q
e logistic regression: minimize —In Ly, ; = *HWHQ—l—C [Zln (fw b (%)% [1 — fan(x:)]'™ yz)]

N
1 1
e SVM: minimize §Hw||2 + CN Zl max(0,1 — y;(wx; + b))
1=

That average persists when we find the gradient with respect to each element of w and b. Evaluating
it over a large number N of (possibly high-D) examples is computationally expensive.

Stochastic Gradient Descent (SGD) approximates gradient descent by evaluating the average loss
not over examples but rather over for speedE]

Consider SGD algorithms when the regular ones are slow on your data set.

Python

e from sklearn.linear model import SGDClassifier

— clf = SGDClassifier(loss='hinge', penalty='12', alpha=0.0001, max_iter=1000):
* loss options include 'hinge' for a linear SVM, 'log_loss' for logistic regression
* penalty (regularization term) options include '12' and '11'
* alpha is a constant multiplying the regularization term (related to our C')
* max_iter is the maximum number of passes over the training data

e from sklearn.linear model import SGDRegressor
— model = SGDRegressor(loss='squared_error', penalty='12', alpha=0.0001, max_iter=1000)
gives SGD OLS regression, whose regularization we will see in §05
e User guide: https://scikit-learn.org/stable/modules/sgd.html
e Reference manual:

— classification:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

— regression:
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

3A variant uses a mini-batch of several randomly-selected examples.

https://scikit-learn.org/stable/modules/sgd.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

Code pattern for using scikit-learn

e import ... loads a module

e ml = <classifier or regressor>(...) gets a classifier or regressor and sets its hyperparameters;

e.g.
— ml = svm.SVC(kernel='linear', C=1)
— ml = svm.SVC(kernel='rbf', C=1, gamma='scale')
— ml = linear model.LinearRegression()
— ml = linear model.LogisticRegression(C=1)
— ml = DecisionTreeClassifier(criterion='entropy', max_depth=None,

min_impurity_decrease=0)

ml = DecisionTreeRegressor(criterion='squared_error', max_depth=None)
— ml = kNeighborsClassifier(n_neighbors=5, weights='uniform')
— ml = kNeighborsRegressor(n_neighbors=5)

e ml.fit(X, y) runs the training algorithm
e ml.coef_ gives w* and ml.intercept_ gives b* (for SVM and linear & logistic regression)
e ml.predict(X) does classification or regression

e ml.predict_proba(X) gives classification outcome probabilities for examples in X (for logistic
regression, decision tree, kNN and, optionally, SVM)

e ml.score(X, y) gives accuracy on X with respect to y or R? or another performance measure

Details of Learning Algorithms

e Different algorithms have different hyperparameters; e.g.

— SVM: for regularization; kernel coefficient for kernel="'rbf"

— logistic regression: for regularization

— ID3 decision tree: d = and € =

— kKNN: , choice of , choice of weights (uniform by default)

— gradient descent: learning rate

e Some algorithms, including decision trees, accept categorical features like “color” taking values
like “red” and “blue”. Some require numbers. Scikit-learn uniformly uses
features. We will see in §5 how to map categories to numbers.

e Some algorithms, including SVM, allow us to weight each class. Weighting a class higher
discourages training errors for that class.

e Some algorithms, including SVM, decision tree, and kNN, can be used for classification and
regression. Others address only one task.

