4 Anatomy of a Learning Algorithm

Each learning algorithm has three parts:

- a ______ for one training example, often a function of the difference between estimated and actual label y associated with feature vector \mathbf{x}
- a ______ providing an optimization criterion; often an average loss over all training examples
- an _____ that uses training data to satisfy the optimization criterion

Algorithm	Loss for (\mathbf{x}, y)	Cost for $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$
Linear regression	squared error $[f_{\mathbf{w},b}(\mathbf{x}) - y]^2$	$MSE_{\mathbf{w},b} = \frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) - y_i]^2$
Logistic regression	negative log likelihood (regularized) $-\ln\left(f_{\mathbf{w},b}(\mathbf{x}_i)^y \left[1 - f_{\mathbf{w},b}(\mathbf{x})\right]^{1-y}\right)$	$\frac{1}{2} \mathbf{w} ^2 + C \left[-\sum_{i=1}^N \ln \left(f_{\mathbf{w},b}(\mathbf{x}_i)^{y_i} \left[1 - f_{\mathbf{w},b}(\mathbf{x}_i) \right]^{1-y_i} \right) \right]$
SVM	hinge loss (regularized) $\max(0, 1 - y(\mathbf{wx} + b))$	$\frac{1}{2} \mathbf{w} ^2 + C \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{w}\mathbf{x}_i + b))$
$\frac{\text{Decision}}{\text{tree}^a}$	negative log likelihood $-\ln f_{ID3}(\mathbf{x})^{y} \left[1 - f_{ID3}(\mathbf{x})\right]^{1-y}$	$-\frac{1}{N}\sum_{i=1}^{N} \left[y_i \ln f_{ID3}(\mathbf{x}_i) + (1-y_i) \ln (1-f_{ID3}(\mathbf{x}_i))\right]$
kNN ^b		

e.g. Recall the loss and cost for the algorithms we saw in §3:

^{*a*}Recall: Burkov says ID3 approximately minimizizes $-\ln L_{\mathbf{w},b}$. ^{*b*}kNN does not easily fit this table.

When we do not have a closed-form solution for minimizing the cost, we use a *numerical optimization* method like gradient descent (below).¹

¹We want to minimize $MSE_{\mathbf{w},b}$ or $-\ln L_{\mathbf{w},b}$ or SVM's cost function over \mathbf{w} and b. However, I present gradient descent from a mathematical and graphical perspective in which we minimize over \mathbf{x} (which in this context does not refer to our feature vector) or over (x, y). Alas, I haven't figured out effortless notation.

Gradient Descent

Gradient descent iteratively steps ______ the direction of and proportional to the ______ of the gradient of a function to seek a *local* minimum.

Recall: For differentiable $z = f(\mathbf{x})$, where $\mathbf{x} = (x_1, \ldots, x_n)$, the the gradient of f is $\nabla f(x_1, \ldots, x_n) = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right)$. To minimize f by gradient descent, choose an initial point (x_1, \ldots, x_n) and iteratively move opposite the gradient by iterating on

 $x_{i+1} =$ _____

where α is the *learning rate* controlling step size.

Many improvements are possible. e.g.

- Decrease α at each step.
- Set α locally optimally at each step via a *line search*, guaranteeing convergence for a well-behaved f.

Starting at a random point, gradient descent finds a *local* minimum of f.

 $z = f(\mathbf{x})$ is *convex* if the line segment between any two points on its graph is not below the graph. If f is convex,² gradient descent can find its *global* minimum.

e.g. Minimize $f(x) = x^2$ starting at x = -2 with $\alpha = 1$. Repeat with $\alpha = \frac{3}{4}$.

e.g. Run gradient descent with $\alpha = 0.4$ to minimize $z = f(x, y) = x^2 + y^2 - 6x - 4y + 13$. Start at (0, 0) and find the next two points on the descent path.

²It will find the global minimum if additionally ∇f is *Lipschitz continuous* and γ is chosen by a good line search.

Stochastic Gradient Descent

We can use gradient descent (or a variant) to minimize the cost functions for linear regression, logistic regression, and a support vector machine.

Note the average loss " $\frac{1}{N} \sum_{i=1}^{N} \dots$ " over the N training examples in these cost functions:

- linear regression: minimize $MSE_{\mathbf{w},b} = \frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) y_i]^2$
- logistic regression: minimize $-\ln L_{\mathbf{w},b} = \frac{1}{2} ||\mathbf{w}||^2 + C(-N) \left[\frac{1}{N} \sum_{i=1}^N \ln \left(f_{\mathbf{w},b}(\mathbf{x}_i)^{y_i} \left[1 f_{\mathbf{w},b}(\mathbf{x}_i) \right]^{1-y_i} \right) \right]$
- SVM: minimize $\frac{1}{2} ||\mathbf{w}||^2 + C \frac{1}{N} \sum_{i=1}^N \max(0, 1 y_i(\mathbf{w}\mathbf{x}_i + b))$

That average persists when we find the gradient with respect to each element of \mathbf{w} and b. Evaluating it over a large number N of (possibly high-D) examples is computationally expensive.

Consider SGD algorithms when the regular ones are slow on your data set.

Python

- from sklearn.linear_model import SGDClassifier
 - clf = SGDClassifier(loss='hinge', penalty='12', alpha=0.0001, max_iter=1000):
 - * loss options include 'hinge' for a linear SVM, 'log_loss' for logistic regression
 - * penalty (regularization term) options include '12' and '11'
 - * alpha is a constant multiplying the regularization term (related to our C)
 - * max_iter is the maximum number of passes over the training data
- from sklearn.linear_model import SGDRegressor
 - model = SGDRegressor(loss='squared_error', penalty='l2', alpha=0.0001, max_iter=1000)
 gives SGD OLS regression, whose regularization we will see in §05
- User guide: https://scikit-learn.org/stable/modules/sgd.html
- Reference manual:
 - classification:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

– regression:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

³A variant uses a *mini-batch* of several randomly-selected examples.

Code pattern for using scikit-learn

- import ... loads a module
- ml = <classifier or regressor>(...) gets a classifier or regressor and sets its hyperparameters; e.g.
 - ml = svm.SVC(kernel='linear', C=1)
 - ml = svm.SVC(kernel='rbf', C=1, gamma='scale')
 - ml = linear model.LinearRegression()
 - ml = linear model.LogisticRegression(C=1)
 - ml = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_impurity_decrease=0)
 - ml = DecisionTreeRegressor(criterion='squared_error', max_depth=None)
 - ml = kNeighborsClassifier(n_neighbors=5, weights='uniform')
 - ml = kNeighborsRegressor(n_neighbors=5)
- ml.fit(X, y) runs the training algorithm
- ml.coef_ gives \mathbf{w}^* and ml.intercept_ gives b^* (for SVM and linear & logistic regression)
- ml.predict(X) does classification or regression
- ml.predict_proba(X) gives classification outcome probabilities for examples in X (for logistic regression, decision tree, kNN and, optionally, SVM)
- ml.score(X, y) gives accuracy on X with respect to y or R^2 or another performance measure

Details of Learning Algorithms

- Different algorithms have different hyperparameters; e.g.
 - SVM: _____ for regularization; _____ kernel coefficient for kernel='rbf'
 - logistic regression: _____ for regularization
 - ID3 decision tree: d =_____ and $\epsilon =$ _____
 - kNN: _____, choice of _____, choice of weights (uniform by default)
 - gradient descent: learning rate _____
- Some algorithms, including decision trees, accept categorical features like "color" taking values like "red" and "blue". Some require numbers. Scikit-learn uniformly uses ________ features. We will see in §5 how to map categories to numbers.
- Some algorithms, including SVM, allow us to weight each class. Weighting a class higher discourages training errors for that class.
- Some algorithms, including SVM, decision tree, and kNN, can be used for classification and regression. Others address only one task.