4 Anatomy of a Learning Algorithm

Each learning algorithm has three parts:

- a ____________ for one training example, often a function of the difference between estimated and actual label y associated with feature vector x
- a _________________ providing an optimization criterion; often an average loss over all training examples
- an ________________ that uses training data to satisfy the optimization criterion

e.g. Recall the loss and cost for the algorithms we saw in §3:

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Loss for (x, y)</th>
<th>Cost for ${(x_i, y_i)}_{i=1}^N$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>squared error $|f_{w,b}(x) - y|^2$</td>
<td>$\text{MSE}{w,b} = \frac{1}{N} \sum{i=1}^N |f_{w,b}(x_i) - y_i|^2$</td>
</tr>
<tr>
<td>Logistic</td>
<td>negative log likelihood (regularized) $-\ln \left(f_{w,b}(x_i)^y \left[1 - f_{w,b}(x) \right]^{1-y} \right)$</td>
<td>$\frac{1}{2} |w|^2 + C \left[-\sum_{i=1}^N \ln \left(f_{w,b}(x_i)^y \left[1 - f_{w,b}(x_i) \right]^{1-y_i} \right) \right]$</td>
</tr>
<tr>
<td>SVM</td>
<td>hinge loss (regularized) $\max(0, 1 - y(wx + b))$</td>
<td>$\frac{1}{2} |w|^2 + C \frac{1}{N} \sum_{i=1}^N \max(0, 1 - y_i(wx_i + b))$</td>
</tr>
<tr>
<td>Decision tree</td>
<td>negative log likelihood $-\ln f_{ID3}(x)^y \left[1 - f_{ID3}(x) \right]^{1-y}$</td>
<td>$-\frac{1}{N} \sum_{i=1}^N \left[y_i \ln f_{ID3}(x_i) + (1 - y_i) \ln (1 - f_{ID3}(x_i)) \right]$</td>
</tr>
<tr>
<td>kNN</td>
<td></td>
<td>L_{kNN}</td>
</tr>
</tbody>
</table>

\[\text{Recall: Burkov says ID3 approximately minimizes } -\ln L_{w,b}. \]
\[\text{kNN does not easily fit this table.} \]

When we do not have a closed-form solution for minimizing the cost, we use a numerical optimization method like gradient descent (below).\[\]

\[\text{We want to minimize MSE}_{w,b} \text{ or } -\ln L_{w,b} \text{ or SVM’s cost function over } w \text{ and } b. \text{ However, I present gradient descent from a mathematical and graphical perspective in which we minimize over } x \text{ (which in this context does not refer to our feature vector) or over } (x, y). \text{ Alas, I haven’t figured out effortless notation.} \]
Gradient Descent

Gradient descent iteratively steps the direction of and proportional to the of the gradient of a function to seek a *local* minimum.

Recall that for a differentiable $z = f(x)$, where $x = (x_1, \ldots, x_n)$, the *gradient* of f is $\nabla f(x_1, \ldots, x_n) = (\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n})$. To minimize f by *gradient descent*, choose an initial point (x_1, \ldots, x_n) and iteratively move opposite the gradient by iterating on

$$x_{i+1} = \text{ }$$

where α is the *learning rate* controlling step size.

Many improvements are possible. e.g.

- Decrease α at each step.
- Set α locally optimally at each step via a *line search*, guaranteeing convergence for a well-behaved f.

Starting at a random point, gradient descent finds a *local* minimum of f.

$z = f(x)$ is *convex* if the line segment between any two points on its graph is not below the graph. If f is convex,

gradient descent can find its *global* minimum.

e.g. Run gradient descent with $\alpha = 0.4$ to minimize $z = f(x, y) = x^2 + y^2 - 6x - 4y + 13$. Start at $(0, 0)$ and find the next two points on the descent path.

$$\nabla f(x, y) = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) = (\text{ }, \text{ })$$

<table>
<thead>
<tr>
<th>i</th>
<th>$x_i = (x_i, y_i)$</th>
<th>$\nabla f(x_i, y_i)$</th>
<th>$-\alpha \nabla f(x_i, y_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$(0, 0)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2It will find the global minimum if additionally ∇f is *Lipschitz continuous* and γ is chosen by a good line search.
Stochastic Gradient Descent

We can use gradient descent (or a variant) to minimize the cost functions for linear regression, logistic regression, and a support vector machine.

Note the average loss \(\frac{1}{N} \sum_{i=1}^{N} \) over the \(N \) training examples in these cost functions:

- **linear regression**: minimize \(\text{MSE}_{w,b} = \frac{1}{N} \sum_{i=1}^{N} [f_{w,b}(x_i) - y_i]^2 \)
- **logistic regression**: minimize \(- \ln L_{w,b} = \frac{1}{2} ||w||^2+ C \left(\frac{1}{N} \sum_{i=1}^{N} \ln \left(f_{w,b}(x_i)^{y_i} [1 - f_{w,b}(x_i)]^{1-y_i} \right) \right) \)
- **SVM**: minimize \(\frac{1}{2} ||w||^2 + C \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(wx_i + b)) \)

That average persists when we find the gradient with respect to each element of \(w \) and \(b \). Evaluating it over a large number \(N \) of (possibly high-\(D \)) examples is computationally expensive.

Stochastic Gradient Descent (SGD) approximates gradient descent by evaluating the average loss not over \(\sum_{i=1}^{N} \) examples but rather over \(\sum_{i=1}^{m} \) for speed.\(^3\)

Consider SGD algorithms when the regular ones are slow on your data set.

Python

- from sklearn.linear_model import SGDClassifier
 - clf = SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, max_iter=1000):
 * loss options include 'hinge' for a linear SVM, 'log_loss' for logistic regression
 * penalty (regularization term) options include 'l2' and 'l1'
 * alpha is a constant multiplying the regularization term (related to our \(C \))
 * max_iter is the maximum number of passes over the training data

- from sklearn.linear_model import SGDRegressor
 - model = SGDRegressor(loss='squared_error', penalty='l2', alpha=0.0001, max_iter=1000) gives SGD OLS regression, whose regularization we will see in §05

Reference manual:

\(^3\)A variant uses a mini-batch of several randomly-selected examples.
Code pattern for using scikit-learn

- **import ...** loads a module
- **ml = <classifier or regressor>(...)** gets a classifier or regressor and sets its hyperparameters; e.g.
 - `ml = svm.SVC(kernel='linear', C=1)`
 - `ml = svm.SVC(kernel='rbf', C=1, gamma='scale')`
 - `ml = linear model.LinearRegression()`
 - `ml = linear model.LogisticRegression(C=1)`
 - `ml = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_impurity_decrease=0)`
 - `ml = DecisionTreeRegressor(criterion='squared_error', max_depth=None)`
 - `ml = kNeighborsClassifier(n_neighbors=5, weights='uniform')`
 - `ml = kNeighborsRegressor(n_neighbors=5)`

- **ml.fit(X, y)** runs the training algorithm
- **ml.coef_** gives w^* and **ml.intercept_** gives b^* (for SVM and linear & logistic regression)
- **ml.predict(X)** does classification or regression
- **ml.predict_proba(X)** gives classification outcome probabilities for examples in X (for logistic regression, decision tree, kNN and, optionally, SVM)
- **ml.score(X, y)** gives accuracy on X with respect to y or some other performance measure

Details of Learning Algorithms

- Different algorithms have different hyperparameters; e.g.
 - SVM: ______ for regularization; ______ kernel coefficient for `kernel='rbf'`
 - logistic regression: ______ for regularization
 - ID3 decision tree: $d = \text{___________}$ and $\epsilon = \text{___________________________}$
 - kNN: _______, choice of _____________, choice of weights (uniform by default)
 - gradient descent: learning rate ______

- Some algorithms, including decision trees, accept categorical features like “color” taking values like “red” and “blue”. Some require numbers. Scikit-learn uniformly uses _______________ features. We will see in §5 how to map categories to numbers.

- Some algorithms, including SVM, allow us to weight each class. Weighting a class higher discourages training errors for that class.

- Some algorithms, including SVM, decision tree, and kNN, can be used for classification and regression. Others address only one task.