4 Anatomy of a Learning Algorithm

Each learning algorithm has three parts:

- a for one training example, often a function of the difference between estimated and actual label y associated with feature vector x
- a providing an optimization criterion; often an average loss over all training examples
- an that uses training data to satisfy the optimization criterion

e.g. Recall the loss and cost for the algorithms we saw in §3:

^aRecall: Burkov says ID3 approximately minimizizes $-\ln L_{\mathbf{w},b}$. b kNN does not easily fit this table.

When we do not have a closed-form solution for minimizing the cost, we use a *numerical optimization* method like gradient descent (below).^{[1](#page-0-2)}

¹We want to minimize MSE_{w,b} or − ln L_{w,b} or SVM's cost function over w and b. However, I present gradient descent from a mathematical and graphical perspective in which we minimize over x (which in this context does not refer to our feature vector) or over (x, y) . Alas, I haven't figured out effortless notation.

Gradient Descent

Gradient descent iteratively steps __________ the direction of and proportional to the of the gradient of a function to seek a local minimum.

Recall: For differentiable $z = f(\mathbf{x})$, where $\mathbf{x} = (x_1, \dots, x_n)$, the the gradient of f is $\nabla f(x_1,\ldots,x_n) = \left(\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n}\right)$ $\frac{\partial f}{\partial x_1},\ldots,\frac{\partial f}{\partial x_n}$ $\frac{\partial f}{\partial x_n}$. To minimize f by gradient descent, choose an initial point (x_1, \ldots, x_n) and iteratively move opposite the gradient by iterating on

 $x_{i+1} = _$

where α is the *learning rate* controlling step size.

Many improvements are possible. e.g.

- Decrease α at each step.
- Set α locally optimally at each step via a *line search*, guaranteeing convergence for a well-behaved f.

Starting at a random point, gradient descent finds a local minimum of f .

 $z = f(\mathbf{x})$ is convex if the line segment between any two points on its graph is not below the graph. If f is convex,^{[2](#page-1-0)} gradient descent can find its global minimum.

e.g. Minimize $f(x) = x^2$ starting at $x = -2$ with $\alpha = 1$. Repeat with $\alpha = \frac{3}{4}$ $\frac{3}{4}$.

e.g. Run gradient descent with $\alpha = 0.4$ to minimize $z = f(x, y) = x^2 + y^2 - 6x - 4y + 13$. Start at (0, 0) and find the next two points on the descent path.

²It will find the global minimum if additionally ∇f is *Lipschitz continuous* and γ is chosen by a good line search.

Stochastic Gradient Descent

We can use gradient descent (or a variant) to minimize the cost functions for linear regression, logistic regression, and a support vector machine.

Note the average loss $\sqrt[n]{\sum_{i=1}^{N} \dots}$ over the N training examples in these cost functions:

- linear regression: minimize $MSE_{\mathbf{w},b} = \frac{1}{N}$ N \sum N $i=1$ $[f_{\mathbf{w},b}(\mathbf{x}_i)-y_i]^2$
- logistic regression: minimize ln $L_{\mathbf{w},b} = \frac{1}{2}$ $\frac{1}{2}||\mathbf{w}||^2 + C(-N)$ $\lceil 1 \rceil$ N \sum N $i=1$ $\ln \left(f_{\mathbf{w},b}(\mathbf{x}_i)^{y_i}\left[1-f_{\mathbf{w},b}(\mathbf{x}_i)\right]^{1-y_i}\right) \right].$
- SVM: minimize $\frac{1}{2}||\mathbf{w}||^2 + C\frac{1}{N}$ N \sum N $i=1$ $\max(0, 1 - y_i(\mathbf{wx}_i + b))$

That average persists when we find the gradient with respect to each element of w and b. Evaluating it over a large number N of (possibly high- D) examples is computationally expensive.

Stochastic Gradient Descent (SGD) approximates gradient descent by evaluating the average loss not over <u>examples but rather over examples but rather over</u> for speed.^{[3](#page-2-0)}

Consider SGD algorithms when the regular ones are slow on your data set.

Python

- from sklearn.linear model import SGDClassifier
	- clf = SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, max_iter=1000):
		- * loss options include 'hinge' for a linear SVM, 'log_loss' for logistic regression
		- * penalty (regularization term) options include 'l2' and 'l1'
		- $*$ alpha is a constant multiplying the regularization term (related to our C)
		- * max_iter is the maximum number of passes over the training data
- from sklearn.linear model import SGDRegressor
	- model = SGDRegressor(loss='squared_error', penalty='l2', alpha=0.0001, max_iter=1000) gives SGD OLS regression, whose regularization we will see in §05
- User guide: <https://scikit-learn.org/stable/modules/sgd.html>
- Reference manual:
	- classification:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

– regression: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

³A variant uses a *mini-batch* of several randomly-selected examples.

Code pattern for using scikit-learn

- import ... loads a module
- \bullet ml = <classifier or regressor>(...) gets a classifier or regressor and sets its hyperparameters; e.g.
	- $-$ ml = svm.SVC(kernel='linear', C=1)
	- $-$ ml = svm.SVC(kernel='rbf', C=1, gamma='scale')
	- ml = linear model.LinearRegression()
	- $-$ ml = linear model. Logistic Regression $(C=1)$
	- $-$ ml = DecisionTreeClassifier(criterion='entropy', max_depth=None, min_impurity_decrease=0)
		- ml = DecisionTreeRegressor(criterion='squared_error', max_depth=None)
	- ml = kNeighborsClassifier(n_neighbors=5, weights='uniform')
	- ml = kNeighborsRegressor(n_neighbors=5)
- \bullet ml.fit(X, y) runs the training algorithm
- ml.coef_ gives w^{*} and ml.intercept_ gives b^* (for SVM and linear & logistic regression)
- ml.predict(X) does classification or regression
- ml.predict_proba(X) gives classification outcome probabilities for examples in X (for logistic regression, decision tree, kNN and, optionally, SVM)
- ml.score(X, y) gives accuracy on X with respect to y or R^2 or another performance measure

Details of Learning Algorithms

- Different algorithms have different hyperparameters; e.g.
	- SVM: ______ for regularization; ______ kernel coefficient for kernel='rbf'
	- logistic regression: for regularization
	- ID3 decision tree: d = and ϵ =
	- $-kNN:$, choice of $\qquad \qquad$, choice of weights (uniform by default)
	- gradient descent: learning rate
- Some algorithms, including decision trees, accept categorical features like "color" taking values like "red" and "blue". Some require numbers. Scikit-learn uniformly uses features. We will see in §5 how to map categories to numbers.
- Some algorithms, including SVM, allow us to weight each class. Weighting a class higher discourages training errors for that class.
- Some algorithms, including SVM, decision tree, and kNN, can be used for classification and regression. Others address only one task.