
4 Anatomy of a Learning Algorithm

Each learning algorithm has three parts:

� a for one training example, often a function of the difference
between estimated and actual label y associated with feature vector x

� a providing an optimization criterion; often an average loss
over all training examples

� an that uses training data to satisfy the optimization criterion

e.g. Recall the loss and cost for the algorithms we saw in §3:

Algorithm Loss for (x, y) Cost for {(xi, yi)}Ni=1

Linear
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SVM

hinge loss (regularized)

max (0, 1− y(wx+ b))
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N∑
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Decision
treea

negative log likelihood

− ln fID3(x)
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N∑
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kNNb

aRecall: Burkov says ID3 approximately minimizizes − lnLw,b.
bkNN does not easily fit this table.

When we do not have a closed-form solution for minimizing the cost, we use a numerical optimization
method like gradient descent (below).1

1We want to minimize MSEw,b or − lnLw,b or SVM’s cost function over w and b. However, I present gradient
descent from a mathematical and graphical perspective in which we minimize over x (which in this context does not
refer to our feature vector) or over (x, y). Alas, I haven’t figured out effortless notation.



Gradient Descent

Gradient descent iteratively steps the
direction of and proportional to the of the
gradient of a function to seek a local minimum.

Recall: For differentiable z = f(x), where x = (x1, . . . , xn),

the the gradient of f is ∇f(x1, . . . , xn) =
(

∂f
∂x1

, . . . , ∂f
∂xn

)
.

To minimize f by gradient descent, choose an initial point
(x1, . . . , xn) and iteratively move opposite the gradient by
iterating on

xi+1 =

where α is the learning rate controlling step size.

Many improvements are possible. e.g.

� Decrease α at each step.

� Set α locally optimally at each step via a line search,
guaranteeing convergence for a well-behaved f .

Starting at a random point, gradient descent finds a local
minimum of f .

z = f(x) is convex if the line segment between any two points on its graph is not below the graph.
If f is convex,2 gradient descent can find its global minimum.

e.g. Minimize f(x) = x2 starting at x = −2 with α = 1. Repeat with α = 3
4 .

e.g. Run gradient descent with α = 0.4 to minimize z = f(x, y) = x2 + y2 − 6x− 4y + 13. Start at
(0, 0) and find the next two points on the descent path.
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)
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2It will find the global minimum if additionally ∇f is Lipschitz continuous and γ is chosen by a good line search.



Stochastic Gradient Descent

We can use gradient descent (or a variant) to minimize the cost functions for linear regression,
logistic regression, and a support vector machine.

Note the average loss “ 1
N

∑N
i=1 . . .” over the N training examples in these cost functions:

� linear regression: minimize MSEw,b =
1
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2

� logistic regression: minimize− lnLw,b =
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[
1

N

N∑
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� SVM: minimize
1

2
||w||2 + C

1

N

N∑
i=1

max(0, 1− yi(wxi + b))

That average persists when we find the gradient with respect to each element ofw and b. Evaluating
it over a large number N of (possibly high-D) examples is computationally expensive.

Stochastic Gradient Descent (SGD) approximates gradient descent by evaluating the average loss
not over examples but rather over for speed.3

Consider SGD algorithms when the regular ones are slow on your data set.

Python

� from sklearn.linear model import SGDClassifier

– clf = SGDClassifier(loss='hinge', penalty='l2', alpha=0.0001, max_iter=1000):

* loss options include 'hinge' for a linear SVM, 'log_loss' for logistic regression

* penalty (regularization term) options include 'l2' and 'l1'

* alpha is a constant multiplying the regularization term (related to our C)

* max_iter is the maximum number of passes over the training data

� from sklearn.linear model import SGDRegressor

– model = SGDRegressor(loss='squared_error', penalty='l2', alpha=0.0001, max_iter=1000)

gives SGD OLS regression, whose regularization we will see in §05

� User guide: https://scikit-learn.org/stable/modules/sgd.html

� Reference manual:

– classification:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

– regression:

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

3A variant uses a mini-batch of several randomly-selected examples.

https://scikit-learn.org/stable/modules/sgd.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html


Code pattern for using scikit-learn

� import ... loads a module

� ml = <classifier or regressor>(...) gets a classifier or regressor and sets its hyperparameters;
e.g.

– ml = svm.SVC(kernel='linear', C=1)

– ml = svm.SVC(kernel='rbf', C=1, gamma='scale')

– ml = linear model.LinearRegression()

– ml = linear model.LogisticRegression(C=1)

– ml = DecisionTreeClassifier(criterion='entropy', max_depth=None,

min_impurity_decrease=0)

ml = DecisionTreeRegressor(criterion='squared_error', max_depth=None)

– ml = kNeighborsClassifier(n_neighbors=5, weights='uniform')

– ml = kNeighborsRegressor(n_neighbors=5)

� ml.fit(X, y) runs the training algorithm

� ml.coef_ gives w∗ and ml.intercept_ gives b∗ (for SVM and linear & logistic regression)

� ml.predict(X) does classification or regression

� ml.predict_proba(X) gives classification outcome probabilities for examples in X (for logistic
regression, decision tree, kNN and, optionally, SVM)

� ml.score(X, y) gives accuracy on X with respect to y or R2 or another performance measure

Details of Learning Algorithms

� Different algorithms have different hyperparameters; e.g.

– SVM: for regularization; kernel coefficient for kernel='rbf'

– logistic regression: for regularization

– ID3 decision tree: d = and ϵ =

– kNN: , choice of , choice of weights (uniform by default)

– gradient descent: learning rate

� Some algorithms, including decision trees, accept categorical features like “color” taking values
like “red” and “blue”. Some require numbers. Scikit-learn uniformly uses
features. We will see in §5 how to map categories to numbers.

� Some algorithms, including SVM, allow us to weight each class. Weighting a class higher
discourages training errors for that class.

� Some algorithms, including SVM, decision tree, and kNN, can be used for classification and
regression. Others address only one task.


