5 Basic Practice (part 3 of 3)

Model Performance Assessment

Regression

- Compute $MSE_{train} = \frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}) y_i]^2$ on training data and ______.
- _____ occurred if $MSE_{train} \ll MSE_{test}$.
- A useful model outperforms the *mean model* that predicts $\hat{y} = \mathbf{w}\mathbf{x} + b = 0\mathbf{x} + b =$ ______.

Classification

A confusion matrix can help diagnose mistakes:

	predicted \hat{y}	
actual y	0	1
0	# negative (TN)	# false positive (FP)
1	# false negative (FN)	# positive (TP)

Several assessment metrics are based on the matrix:¹

- The two most-frequently used metrics are precision and recall:
 - $precision = \frac{\#\text{correct positive predictions}}{\#\text{positive predictions}} = \frac{\text{TP}}{\text{TP} + \text{FP}}, \text{ the ability } \text{ to label as positive a sample that is negative}$ $recall = \frac{\#\text{correct positive predictions}}{\#\text{positive examples}} = \frac{\text{TP}}{\text{TP} + \text{FN}}, \text{ the ability to } \text{ all positive examples}$ e.g. In document retrieval with "relevant" = positive = 1:

– ______ is proportion of relevant documents in the returned list.

– ______ is proportion of relevant documents returned to relevant documents available.

e.g. In spam (= positive = 1) detection, we want high ______ to avoid calling a message spam when it is not (FP). We accept lower ______ putting some spam in our inbox (FN). We usually must choose between precision and recall, e.g.:

- Assign higher weight to examples of a specific class.
- Tune hyperparameters to maximize one.
- Vary decision threshold, e.g. make a positive prediction only if model probability is higher than a number larger than 0.5.
- Accuracy

	# predictions	- TP + TN
accuracy =	#predictions	$ \overline{\text{TN} + \text{FN} + \text{FP} + \text{TP}}$

Accuracy is useful when errors in both (or all) classes are equally important.²

¹Make a similar matrix for multiclass classification. For the metrics, call one class positive and others negative.

 $^{^{2}}Cost$ -sensitive accuracy assigns a positive cost to each mistake, FN and FP, and multiplies in those costs when calculating accuracy.

• Area Under ROC Curve (AUC)

An ROC³ curve assesses a classifier that returns a probability along with its prediction.⁴

- $True positive rate = TPR = \frac{\#true positive predictions}{\#positive examples} = \frac{TP}{TP + FN} (= ____)$ = proportion of positive examples predicted correctly
- False positive rate = $FPR = \frac{\# false \text{ positive predictions}}{\# negative examples} = \frac{FP}{FP + TN} = proportion of negative examples predicted _____$

To draw ROC curve,

- use each of several values $t \in [0, 1]$ (e.g. from a model) as a prediction probability threshold t, predict labels, and find TPR and FPR. Note:
 - * $t = 0 \implies \hat{y} = 1$ for every **x**, so (1, 1) is on each ROC curve
 - * $t = 1 \implies \hat{y} = 0$ for every **x**, so (0, 0) is on each ROC curve
- plot resulting {(x = FPR, y = TPR)} pairs⁵

The higher the area under the ROC curve (AUC), the better:

- The diagonal line ______ corresponds to random guessing and has AUC = _____ because in N trials with P(y = 1) = p, guessing with $P(\hat{y} = 1) = c$, we expect this matrix, TPR and FPR:

	actual y	0	1	rate		
	0	TN =	FP =	FPR =		
	1	FN =	TP =	TPR =		
So is on the ROC curve for each $c \in [0, 1]$.						
- AUC < 0.5 (than guessing) indicates a problem.						

- AUC = 1 corresponds to a _____ classifier, as it allows TPR=1 with FPR=0.

Select a threshold that gives TPR near 1 with FPR near 0.

Python

- from sklearn.metrics import (confusion_matrix, precision_score, recall_score, accuracy_score, roc_auc_score, roc_curve, RocCurveDisplay)
- confusion_matrix(y_true, y_pred)

³ "ROC" refers to "receiver operating characteristic" from radar engineers detecting enemy objects in battlefields. Two radar receiver operating characteristics are TPR and FPR.

 $^{^{4}\}mathrm{e.g.}$ logistic regression, decision tree, $k\mathrm{NN}$

⁵Plotting (x = FPR, y = TPR) is like plotting a hypothesis test's (x = type I error rate $\hat{\alpha}$, y = power $1 - \hat{\beta}$).

- precision_score(y_true, y_pred)
- recall_score(y_true, y_pred)
- accuracy_score(y_true, y_pred) (or use clf.score(X, y) as before)
- roc_auc_score(y_true, y_score) gives AUC if y_true = $\{y_i\}$ and y_score = $\{P(y_i = 1)\}$
- roc_curve(y_true, y_score) gives arrays (FPR, TPR, thresholds) with (ignoring i = 0):
 - FPR[i] and TPR[i] the false and true positive rates, respectively, of predictions from "score \geq thresholds[i]"
 - thresholds[i] decreasing thresholds on decision function
- RocCurveDisplay.from_estimator(estimator, X, y) plots ROC curve for estimator;⁶ or RocCurveDisplay.from_predictions(y_true, y_pred) needs y_pred = $\{P(y_i = 1)\}$

To learn more:

• Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

.precision_score.html

.recall_score.html

 $. \verb+accuracy_score.html+$

 $.{\tt roc_auc_score.html}$

.roc_curve.html

.RocCurveDisplay.html

• User guide:

https://scikit-learn.org/stable/modules/model_evaluation.html#confusion-matrix

#precision-recall-f-measure-metrics

#accuracy-score

#roc-metrics

https://scikit-learn.org/stable/visualizations.html (plot ROC curve)

⁶e.g. svm.SVC(), linear model.LogisticRegression(), DecisionTreeClassifier(), kNeighborsClassifier()

Hyperparameter Tuning

A hyperparameter is a parameter that controls learning but is not set by training.

Hyperparameter tuning is experimentally finding good values for hyperparameters.⁷

- *Grid search* requires one or several values for each hyperparameter and tries ______ retaining the best.
- *Random search* requires each hyperparameter to have a statistical distribution. It tries as many randomly-sampled combinations as ______allows, retaining the best.

After any of these tuning processes, we might try to tune further with ______.

Cross-validation

Cross-validation steps are:

- Randomly split data into five folds (subsets) $\{F_1, \ldots, F_5\}$, each containing ______examples.
- Train model i on the four folds excluding F_i , for i = 1, ..., 5.
- Evaluate model i using F_i as validation data.
- ______the five values of your performance metric. This reduces the variability of the metric relative to doing a single train-validate split.

Python

- from sklearn.model_selection import cross_val_score
 - cross_val_score(estimator, X, y) uses cross validation to evaluate estimator's score
- Hyperparameter tuning:
 - from sklearn.model_selection import GridSearchCV

clf = GridSearchCV(estimator, param_grid) creates a cross-validated grid search classifier using an estimator and dictionary param_grid of name:value(s) pairs.

- from sklearn.model_selection import RandomizedSearchCV
 - clf = RandomizedSearchCV(estimator, param_distributions, n_iter=10) creates a cross-validated random search classifier using an estimator and a dictionary param_distributions of name:[distribution or value(s)] pairs.
 - n_iter is the number of parameter settings sampled.

⁷e.g. SVM: C for regularization, γ for kernel='rbf'; logistic regression: C for regularization; ID3 decision tree: d = max_depth, $\epsilon = \min_impurity_decrease; kNN: k$, choice of metric

- For both:
 - * clf.fit(X, y) runs estimator.fit(X, y) with all combinations in param_grid (for GridSearchCV()) or with n_iter combinations from param_distributions (for RandomizedSearchCV())
 - * clf.best_score_ gives the mean cross-validated score of the best estimator
 - * clf.best_params_ gives the best hyperparameter combination on validation data
 - * clf.cv_results_ gives a dictionary of cross validation results that we can display via print(pd.DataFrame(clf.cv_results_))
 - * clf.predict(X), clf.predict_proba(X), clf.score(X, y) use best combination
 - * There is also a scoring=None parameter which uses estimator's .score() method (accuracy for classification, R^2 for regression) by default. We can also set it to:
 - \cdot for classification: 'accuracy', 'precision', 'recall', 'roc_auc', others
 - · for regression: 'r2' (R^2) , others

To learn more:

• Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html

• User guide:

https://scikit-learn.org/stable/modules/cross_validation.html

https://scikit-learn.org/stable/modules/grid_search.html

 $\tt https://scikit-learn.org/stable/modules/grid_search.html \# randomized-parameter-search with the search and the search with the search and the search and$

https://scikit-learn.org/stable/modules/model_evaluation.html (for scoring; search
for "custom")