5 Basic Practice (part 3 of 3)

Model Performance Assessment

Regression

- Compute $\text{MSE}_{\text{train}} = \frac{1}{N} \sum_{i=1}^{N} [f_{w,b}(x) - y_i]^2$ on training data and __________.
- __________ occurred if $\text{MSE}_{\text{train}} \ll \text{MSE}_{\text{test}}$.
- A useful model outperforms the mean model that predicts $\hat{y} = wx + b = 0x + b = _____$.

Classification

A confusion matrix can help diagnose mistakes:

<table>
<thead>
<tr>
<th>actual y</th>
<th>predicted \hat{y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td># ________ negative (TN) # false positive (FP)</td>
</tr>
<tr>
<td>1</td>
<td># false negative (FN) # __________ positive (TP)</td>
</tr>
</tbody>
</table>

Several assessment metrics are based on the matrix:

- The two most-frequently used metrics are precision and recall:

 $\text{precision} = \frac{\# \text{correct positive predictions}}{\# \text{positive predictions}} = \frac{TP}{TP + FP}$, the ability _____ to label as positive a sample that is negative.

 $\text{recall} = \frac{\# \text{correct positive predictions}}{\# \text{positive examples}} = \frac{TP}{TP + FN}$, the ability to _____ all positive examples.

 e.g. In document retrieval with “relevant” = positive = 1:

 - __________ is proportion of relevant documents in the returned list.
 - __________ is proportion of relevant documents returned to relevant documents available.

 e.g. In spam (= positive = 1) detection, we want high __________ to avoid calling a message spam when it is not (FP). We accept lower __________ putting some spam in our inbox (FN).

 We usually must choose between precision and recall, e.g.:

 - Assign higher weight to examples of a specific class.
 - Tune hyperparameters to maximize one.
 - Vary decision threshold, e.g. make a positive prediction only if model probability is higher than a number larger than 0.5.

- Accuracy

 $\text{accuracy} = \frac{\# \text{correct predictions}}{\# \text{predictions}} = \frac{TP + TN}{TN + FN + FP + TP}$

 Accuracy is useful when errors in both (or all) classes are equally important.

\(^1\)Make a similar matrix for multiclass classification. For the metrics, call one class positive and others negative.

\(^2\)Cost-sensitive accuracy assigns a positive cost to each mistake, FN and FP, and multiplies in those costs when calculating accuracy.
Area Under ROC Curve (AUC)

An ROC curve assesses a classifier that returns a probability along with its prediction.

- **True positive rate** = TPR = \(\frac{\text{#true positive predictions}}{\text{#positive examples}} \) = proportion of positive examples predicted correctly

- **False positive rate** = FPR = \(\frac{\text{#false positive predictions}}{\text{#negative examples}} \) = proportion of negative examples predicted

To draw ROC curve,

- use each of several values \(t \in [0, 1] \) (e.g. from a model) as a prediction probability threshold \(t \), predict labels, and find TPR and FPR. Note:
 * \(t = 0 \Rightarrow \hat{y} = 1 \) for every \(x \), so \((1, 1)\) is on each ROC curve
 * \(t = 1 \Rightarrow \hat{y} = 0 \) for every \(x \), so \((0, 0)\) is on each ROC curve
- plot resulting \(\{(x = \text{FPR}, y = \text{TPR})\} \) pairs

The higher the area under the ROC curve (AUC), the better:

- The diagonal line corresponds to random guessing and has AUC = \(\frac{1}{2} \) because in \(N \) trials with \(P(y = 1) = p \), guessing with \(P(\hat{y} = 1) = c \), we expect this matrix, TPR and FPR:

<table>
<thead>
<tr>
<th>actual (y)</th>
<th>predicted (\hat{y})</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TN = (\frac{1}{2}N)</td>
<td>FPR = (\frac{1}{2})</td>
</tr>
<tr>
<td>1</td>
<td>FN = (\frac{1}{2}N)</td>
<td>TP = (\frac{1}{2}N)</td>
</tr>
</tbody>
</table>

So \(\frac{1}{2} \) is on the ROC curve for each \(c \in [0, 1] \).

- AUC < 0.5 (than guessing) indicates a problem.
- AUC = 1 corresponds to a classifier, as it allows TPR=1 with FPR=0.

Select a threshold that gives TPR near 1 with FPR near 0.

Python

- `from sklearn.metrics import (confusion_matrix, precision_score, recall_score, accuracy_score, roc_auc_score, roc_curve, RocCurveDisplay)`

- `confusion_matrix(y_true, y_pred)`

4“ROC” refers to “receiver operating characteristic” from radar engineers detecting enemy objects in battlefields. Two radar receiver operating characteristics are TPR and FPR.

4e.g. logistic regression, decision tree, kNN

5Plotting \((x = \text{FPR}, y = \text{TPR})\) is like plotting a hypothesis test’s \((x = \text{type I error rate } \alpha, y = \text{power } 1 - \beta)\).
• precision_score(y_true, y_pred)

• recall_score(y_true, y_pred)

• accuracy_score(y_true, y_pred) (or use clf.score(X, y) as before)

• roc_auc_score(y_true, y_score) gives AUC if y_true = {y_i} and y_score = {P(y_i = 1)}

• roc_curve(y_true, y_score) gives arrays (FPR, TPR, thresholds) with (ignoring i = 0):
 – FPR[i] and TPR[i] the false and true positive rates, respectively, of predictions from “score ≥ thresholds[i]”
 – thresholds[i] decreasing thresholds on decision function

• RocCurveDisplay.from_estimator(estimator, X, y) plots ROC curve for estimator
 or
RocCurveDisplay.from_predictions(y_true, y_pred) needs y_pred = {P(y_i = 1)}

To learn more:

• Reference manual:
 .precision_score.html
 .recall_score.html
 .accuracy_score.html
 .roc_auc_score.html
 .roc_curve.html
 .RocCurveDisplay.html

• User guide:
 #precision-recall-f-measure-metrics
 #accuracy-score
 #roc-metrics
 https://scikit-learn.org/stable/visualizations.html (plot ROC curve)

6e.g. svm.SVC(), linear model.LogisticRegression(), DecisionTreeClassifier(), kNeighborsClassifier()
Hyperparameter Tuning

A hyperparameter is a parameter that controls learning but is not set by training.

Hyperparameter tuning is experimentally finding good values for hyperparameters.

- Grid search requires one or several values for each hyperparameter and tries ____________, retaining the best.
- Random search requires each hyperparameter to have a statistical distribution. It tries as many randomly-sampled combinations as ____________ allows, retaining the best.

After any of these tuning processes, we might try to tune further with ____________.

Cross-validation

Cross-validation steps are:

- Randomly split data into five folds (subsets) \{F_1, \ldots, F_5\}, each containing _______ examples.
- Train model i on the four folds excluding \(F_i\), for \(i = 1, \ldots, 5\).
- Evaluate model i using \(F_i\) as validation data.
- ____________ the five values of your performance metric. This reduces the variability of the metric relative to doing a single train-validate split.

Python

- from sklearn.model_selection import cross_val_score
 - cross_val_score(estimator, X, y) uses cross validation to evaluate estimator's score

- Hyperparameter tuning:
 - from sklearn.model_selection import GridSearchCV
 clf = GridSearchCV(estimator, param_grid) creates a cross-validated grid search classifier using an estimator and dictionary param_grid of name:value(s) pairs.
 - from sklearn.model_selection import RandomizedSearchCV
 clf = RandomizedSearchCV(estimator, param_distributions, n_iter=10) creates a cross-validated random search classifier using an estimator and a dictionary param_distributions of name:[distribution or value(s)] pairs.
 n_iter is the number of parameter settings sampled.

\(^7\) e.g. SVM: \(C\) for regularization, \(\gamma\) for kernel='rbf'; logistic regression: \(C\) for regularization; ID3 decision tree: \(d = \text{max_depth}, \epsilon = \text{min_impurity_decrease}\); kNN: \(k\), choice of metric
For both:

* `clf.fit(X, y)` runs `estimator.fit(X, y)` with all combinations in `param_grid` (for `GridSearchCV()`) or with `n_iter` combinations from `param_distributions` (for `RandomizedSearchCV()`)

* `clf.best_score_` gives the mean cross-validated score of the best `estimator`

* `clf.best_params_` gives the best hyperparameter combination on validation data

* `clf.cv_results_` gives a dictionary of cross validation results that we can display via `print(pd.DataFrame(clf.cv_results_))`

* `clf.predict(X), clf.predict_proba(X), clf.score(X, y)` use best combination

* There is also a `scoring=None` parameter which uses `estimator`'s `.score()` method (accuracy for classification, R^2 for regression) by default. We can also set it to:
 - for classification: 'accuracy', 'precision', 'recall', 'roc_auc', others
 - for regression: 'r2' (R^2), others

To learn more:

- Reference manual:

- User guide: