5 Basic Practice (part 3 of 3)

Model Performance Assessment

Regression

- Compute $\text{MSE}_{\text{train}} = \frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}) - y_i]^2$ on training data and \[.\]
- \[\text{occurred if } \text{MSE}_{\text{train}} \ll \text{MSE}_{\text{test}}.\]
- A useful model outperforms the mean model that predicts $\hat{y} = \mathbf{w} \mathbf{x} + b = \mathbf{0} \mathbf{x} + b = \mathbf{0}$.

Classification

A confusion matrix can help diagnose mistakes:

<table>
<thead>
<tr>
<th>actual y</th>
<th>predicted \hat{y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td># negative (TN)</td>
</tr>
<tr>
<td>1</td>
<td># false negative (FN)</td>
</tr>
</tbody>
</table>

Several assessment metrics are based on the matrix:

- The two most-frequently used metrics are precision and recall:
 \[
 \text{precision} = \frac{\# \text{correct positive predictions}}{\# \text{positive predictions}} = \frac{\text{TP}}{\text{TP} + \text{FP}}, \text{ the ability } ___ \text{ to label as positive a sample that is negative.}
 \]
 \[
 \text{recall} = \frac{\# \text{correct positive predictions}}{\# \text{positive examples}} = \frac{\text{TP}}{\text{TP} + \text{FN}}, \text{ the ability to ___ all positive examples.}
 \]
 e.g. In document retrieval with “relevant” = positive = 1:
 - ___ is proportion of relevant documents in the returned list.
 - ___ is proportion of relevant documents returned to relevant documents available.

 e.g. In spam (= positive = 1) detection, we want high ___ to avoid calling a message spam when it is not (FP). We accept lower ___ putting some spam in our inbox (FN).

 We usually must choose between precision and recall, e.g.:
 - Assign higher weight to examples of a specific class.
 - Tune hyperparameters to maximize one.
 - Vary decision threshold, e.g. make a positive prediction only if model probability is higher than a number larger than 0.5.

- Accuracy
 \[
 \text{accuracy} = \frac{\# \text{predictions}}{\# \text{predictions}} = \frac{\text{TP} + \text{TN}}{\text{TN} + \text{FN} + \text{FP} + \text{TP}}
 \]
 Accuracy is useful when errors in both (or all) classes are equally important.\footnote{Make a similar matrix for multiclass classification. For the metrics, call one class positive and others negative.}

\footnote{Cost-sensitive accuracy assigns a positive cost to each mistake, FN and FP, and multiplies in those costs when calculating accuracy.}
Area Under ROC Curve (AUC)
An ROC\[3\] curve assesses a classifier that returns a probability along with its prediction\[3\].

- **True positive rate** = TPR = \(\frac{\text{#true positive predictions}}{\text{#positive examples}}\) = \(\frac{TP}{TP + FN} (= \text{__________})\)
 - proportion of positive examples predicted correctly
- **False positive rate** = FPR = \(\frac{\text{#false positive predictions}}{\text{#negative examples}}\) = \(\frac{FP}{FP + TN} (= \text{ proportion of negative examples predicted ________})\)

To draw ROC curve:
- discretize probability range; e.g. \([0, 1]\) becomes \([0, 0.1, 0.2, \ldots, 1]\), or choose probabilities from a model
- using each value as prediction threshold, predict labels and find TPR and FPR
- plot resulting \(\{(x = \text{FPR}, y = \text{TPR})\}\) pairs\[5\]

The higher the **area under the ROC curve** (AUC), the better:
- The diagonal line \(\text{__________}\) corresponds to random guessing and has AUC = \(\text{__________}\) because in \(N\) trials with \(P(y = 1) = p\), guessing with \(P(\hat{y} = 1) = c\), we expect this matrix, TPR and FPR:

<table>
<thead>
<tr>
<th>actual (y)</th>
<th>predicted (\hat{y})</th>
<th>rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>TN = _______</td>
<td>FP = _______</td>
</tr>
<tr>
<td>1</td>
<td>FN = _______</td>
<td>TP = _______</td>
</tr>
</tbody>
</table>

So \(\text{__________}\) is on the ROC curve for each \(c \in [0, 1]\).
- AUC < 0.5 (\(\text{__________}\) than guessing) indicates a problem.
- AUC = 1 corresponds to a \(\text{__________}\) classifier, as it allows TPR=1 with FPR=0.

Select a threshold that gives TPR near 1 with FPR near 0.

Python

- `from sklearn.metrics import (confusion_matrix, precision_score, recall_score, accuracy_score, roc_auc_score, roc_curve, RocCurveDisplay)`
- `confusion_matrix(y_true, y_pred)`
- `precision_score(y_true, y_pred)`

\[3\]“ROC” refers to “receiver operating characteristic” from radar engineers detecting enemy objects in battlefields. Two radar receiver operating characteristics are TPR and FPR.
\[4\]e.g. logistic regression, decision tree, kNN
\[5\]Plotting \((x = \text{FPR}, y = \text{TPR})\) is like plotting a hypothesis test’s \((x = \text{type I error rate } \hat{\alpha}, y = \text{power } 1 - \hat{\beta})\).
• recall_score(y_true, y_pred)

• accuracy_score(y_true, y_pred) (or use clf.score(X, y) as before)

• roc_auc_score(y_true, y_score) gives AUC if y_true = \{y_i\} and y_score = \{P(y_i = 1)\}

• roc_curve(y_true, y_score) gives arrays (FPR, TPR, thresholds) with (ignoring i = 0):
 – FPR[i] and TPR[i] the false and true positive rates, respectively, of predictions from “score \geq \text{thresholds[i]}”
 – thresholds[i] decreasing thresholds on decision function

• RocCurveDisplay.from_estimator(estimator, X, y) plots ROC curve for estimator\(^6\) or
RocCurveDisplay.from_predictions(y_true, y_pred) needs y_pred = \{P(y_i = 1)\}

To learn more:

• Reference manual:
 [precision_score.html](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html)
 [recall_score.html](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html)
 [accuracy_score.html](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html)
 [roc_auc_score.html](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html)

• User guide:
 #precision-recall-f-measure-metrics
 #accuracy-score
 #roc-metrics

\(^6\) e.g. svm.SVC(), linear model.LogisticRegression(), DecisionTreeClassifier(), kNeighborsClassifier()
Hyperparameter Tuning

A hyperparameter is a parameter that controls learning but is not set by training.

Hyperparameter tuning is experimentally finding good values for hyperparameters.

- **Grid search** requires one or several values for each hyperparameter and tries ____________, retaining the best.
- **Random search** requires each hyperparameter to have a statistical distribution. It tries as many randomly-sampled combinations as ____________ allows, retaining the best.

After any of these tuning processes, we might try to tune further with ____________.

Cross-validation

Cross-validation steps are:

- Randomly split data into five folds (subsets) \{F_1, \ldots, F_5\}, each containing _______ examples.
- Train model \(i\) on the four folds excluding \(F_i\), for \(i = 1, \ldots, 5\).
- Evaluate model \(i\) using \(F_i\) as validation data.
- _______ the five values of your performance metric. This reduces the variability of the metric relative to doing a single train-validate split.

Python

- from sklearn.model_selection import cross_val_score

 - cross_val_score(estimator, X, y) uses cross validation to evaluate estimator’s score
- Hyperparameter tuning:

 - from sklearn.model_selection import GridSearchCV

 clf = GridSearchCV(estimator, param_grid) creates a cross-validated grid search classifier using an estimator and dictionary param_grid of name:value(s) pairs.

 - from sklearn.model_selection import RandomizedSearchCV

 clf = RandomizedSearchCV(estimator, param_distributions, n_iter=10) creates a cross-validated random search classifier using an estimator and a dictionary param_distributions of name:[distribution or value(s)] pairs.

 n_iter is the number of parameter settings sampled.

7 e.g. SVM: \(C\) for regularization, \(\gamma\) for kernel='rbf'; logistic regression: \(C\) for regularization; ID3 decision tree: \(d = \text{max_depth}\), \(\epsilon = \text{min_impurity_decrease}\); kNN: \(k\), choice of metric
For both:

* `clf.fit(X, y)` runs `estimator.fit(X, y)` with all combinations in `param_grid` (for `GridSearchCV()`) or with `n_iter` combinations from `param_distributions` (for `RandomizedSearchCV()`)
* `clf.best_score_` gives the mean cross-validated score of the best `estimator`
* `clf.best_params_` gives the best hyperparameter combination on validation data
* `clf.cv_results_` gives a dictionary of cross validation results that we can display via `print(pd.DataFrame(clf.cv_results_))`
* `clf.predict(X), clf.predict_proba(X), clf.score(X, y)` use best combination

* There is also a `scoring=None` parameter which uses `estimator`'s `.score()` method (accuracy for classification, R^2 for regression) by default. We can also set it to:
 - for classification: 'accuracy', 'precision', 'recall', 'roc_auc', others
 - for regression: 'r2' (R^2), others

To learn more:

- **Reference manual:**

- **User guide:**
