7 Problems and Solutions (Part 3 of 3)

Ensemble Learning

As simple models may perform poorly, in ensemble learning we combine many models (each only a little better than random guessing) to get a strong meta-model.

Ensemble models work because good models agree on the same prediction, while (uncorrelated) bad models on different ones.

makes several models independently and averages their predictions to reduce overfitting:

- **Bagging** (short for “bootstrap aggregating”) generates \(B \) random sets of examples \(\{S_i : i = 1, \ldots, B\} \) of size \(N \) from the training data. For each \(S_i \), train a decision tree \(f_i \). Make a prediction:

 - for classification as the most frequent of the \(B \) predictions
 - for regression as the average of the \(B \) predictions, \(\hat{y} = \hat{f}(x) = \frac{1}{B} \sum_{i=1}^{B} f_i(x) \)

- A **random forest** is a bagging variant that strives for uncorrelated trees by selecting a random subset of for each tree. Hyperparameters include

 - the maximum \(d \) of each tree
 - the \(B \) of trees
 - the number of to include per subset

This is widely used and effective because it reduces overfitting of the ensemble model by under-emphasizing noise, outliers, and over- or under-represented examples in the data.

Boosting builds models to reduce underfitting:

- **Boosting** iteratively creates models such that model \((i + 1) \) is trained to correct model \(i \)'s errors by training examples to increase the weight of mis-classified examples and decrease the weight of correctly-classified examples. The final ensemble model combines all the models.

- For **gradient boosting**:

 - For regression:

 * Start with a constant model \(f = f_0(x) = \frac{1}{N} \sum_{i=1}^{N} y_i \).
* Calculate $e_i = y_i - f(x_i)$ for $i = 1, \ldots, N$. Then train a new model f_1 with the original y values replaced by the \hat{y}_i. The boosted model is then $f = f_0 + \alpha f_1$, where hyperparameter α is the learning rate.

* Repeat by training f_2 on residuals with respect to f_1 and get the boosted model $f = f_0 + \alpha f_1 + \alpha f_2$, and so on, until making model f_M, where M is the maximum number of trees.

Model $i + 1$ is trained to residuals of model i. Recall that in gradient descent we move our parameter vector by step size α opposite the direction of the gradient toward the value that minimizes an objective function. Gradient boosting uses \hat{y}_i as a proxy for the gradient, as they show how to adjust the model to ∇L_f. Again α limits the amount the model moves in one step.

Burkov asserts the overall model f minimizes MSE.

Hyperparameters include:

* the number ______ of trees
* the learning rate ______
* the ______ of trees

Boosting reduces ______ (where bagging reduced overfitting); ______ the depth and number of trees can help boosting avoid overfitting.

— For classification (in the binary case with M regression decision trees):

As in logistic regression, use the sigmoid function $P(y = 1|x, f) = \frac{1}{1 + e^{-f(x)}}$, but now $f(x) = \sum_{m=1}^{M} f_m(x)$ where f_m is a decision tree.

Choose f to maximize log likelihood, $L_f = \sum_{i=1}^{N} \ln P(y_i = 1|x_i, f)$:

* Start with a constant model $f = f_0 = \frac{p}{1 - p}$ (odds of $y = 1$), where $p = \frac{1}{N} \sum_{i=1}^{N} y_i$.

* At each step m, add a new tree to the model. To find the best f_m, find for each $i = 1, \ldots, N$ the ∇L_f: $g_i = \frac{\partial L_f}{\partial f(x_i)} = \frac{1}{e^f(x_i) + 1}$, where f is the ensemble model built at step $m - 1$. Now $g = (g_1, \ldots, g_N)$ is the gradient $\nabla L_f(x)$.

* Transform training data by replacing label y_i with ______ and build a new tree f_m.

* Find the optimal update step ρ_m as $\rho_m \leftarrow \arg \max \rho L_f + \rho f_m$ and update the ensemble model by adding the new tree f_m as $f \leftarrow f + \alpha \rho_m f_m$ (where α is the learning rate).

* Iterate until $m = M$ and return f.

Gradient boosting is one of the best ML algorithms, as it gives accurate models and can handle ______ data sets. It usually outperforms random forests but is slower to train.

1 Burkov calls this residual “\hat{y},” which I think must be a typo since we usually call a prediction \hat{y}.

2 I added the (x_i) to Burkov’s terse notation in the partial derivative denominator.
Python

To learn more:

- Reference manual:
 - bagging:
 - random forest:
 - plot decision surface: https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_iris.html
 - gradient boosting: