
7 Problems and Solutions (Part 1 of 3)

Kernel Regression

Background: Consider applying linear regression to data. We could use a polynomial
like y = w1xi+w2x

2
i + b and check graphically (or by comparing MSEtrain and MSEtest) for a good

fit. However, for D > 3 dimensions, finding the right polynomial could be hard.

Kernel regression is a non-parametric method. It extends weighted k-NN (another non-parametric
method) to the case of

� Its simplest form for 1D x = x is f(x) =
N∑
i=1

wiyi, where wi =
k
(
x−xi
b

)∑N
j=1 k

(
x−xj

b

) .1
� f(x) is a of {yi} since

∑
wi = 1.

� k() is a kernel that plays the role of a similarity function. Coefficients wi are higher when x
is similar to xi and lower otherwise.

� The most common kernel is the kernel, k(z) =
1√
2π

exp

(
−z2

2

)
.

The bandwidth b is a hyperparameter tuned using cross-validation.

e.g. Draw {(xi, yi)} in nonlinear pattern. Add bell curves (wide, narrow, just right).

Python2

from localreg import localreg, rbf

y_hat = localreg(x, y, x0=None, degree=0, kernel=rbf.gaussian, radius=1)

computes ŷ = f(x) where

� x and y are values to fit

� x0 are values at which to compute {ŷi}; the default is to use x

� kernel is a function of one argument (there are many kernels besides rbf.gaussian; we can
make our own)

� degree=0 corresponds to our weighted average

� radius is b

To learn more: https://pypi.org/project/localreg/

1For vector input, xi − x is replaced by Euclidean distance ||xi − x||. Burkov uses factors 1
N

in front of his f(x)
sum and N in his wi definition; I omitted them since N 1

N
= 1. Burkov uses xi − x and xj − x where I used their

opposites to see that we’re standardizing x using µ = xi and σ = b; k() is symmetric, so this matters only for clarity
(and compatibility with his §9).

2I have not found kernel regression in skikit-learn. However, the package localreg does it.

https://pypi.org/project/localreg/

