7 Problems and Solutions (Part 1 of 3)

Kernel Regression

Background: Consider applying linear regression to data. We could use a polynomial like \(y = w_1 x_i + w_2 x_i^2 + b \) and check graphically (or by comparing MSE_{\text{train}} and MSE_{\text{test}}) for a good fit. However, for \(D > 3 \) dimensions, finding the right polynomial could be hard.

Kernel regression is a non-parametric method. It extends weighted k-NN (another non-parametric method) to the case of \(\hat{y} \)

- Its simplest form for 1D \(x = x \) is \(f(x) = \sum_{i=1}^{N} w_i y_i \), where \(w_i = \frac{k \left(\frac{x - x_i}{b} \right)}{\sum_{j=1}^{N} k \left(\frac{x - x_j}{b} \right)} \)
- \(f(x) \) is a \underline{weighted average} of \(\{y_i\} \) since \(\sum w_i = 1 \).
- \(k() \) is a kernel that plays the role of a similarity function. Coefficients \(w_i \) are higher when \(x \) is similar to \(x_i \) and lower otherwise.
- The most common kernel is the \underline{Gaussian} kernel, \(k(z) = \exp \left(-\frac{z^2}{2} \right) \).

The bandwidth \(b \) is a hyperparameter tuned using cross-validation.

\[\hat{x} \]

\[\hat{y} \]

Python\footnote{For vector input, \(x_i \) is replaced by Euclidean distance \(||x_i - x|| \). Burkov uses factors \(\frac{1}{N} \) in front of his \(f(x) \) sum and \(N \) in his \(w_i \) definition; I omitted them since \(N \) \(\frac{1}{N} = 1 \). Burkov uses \(x_i - x \) and \(x_j - x \) where I used their opposites to see that we’re standardizing \(x \) using \(\mu = x_i \) and \(\sigma = b \); \(k() \) is symmetric, so this matters only for clarity (and compatibility with his §9).}

```python
from localreg import localreg, rbf

y_hat = localreg(x, y, x0=None, degree=0, kernel=rbf.gaussian, radius=1)
```

computes \(\hat{y} = f(x) \) where

- \(x \) and \(y \) are values to fit
- \(x0 \) are values at which to compute \(\{\hat{y}_i\} \); the default is to use \(x \)
- \(kernel \) is a function of one argument (there are many kernels besides \(rbf.gaussian \); we can make our own)
- \(degree=0 \) corresponds to our weighted average
- \(radius \) is \(b \)

To learn more: https://pypi.org/project/localreg/