7 Problems and Solutions (Part 1 of 3)

Kernel Regression

Background: Consider applying linear regression to ______data. We could use a polynomial like $y = w_1 x_i + w_2 x_i^2 + b$ and check graphically (or by comparing MSE_{train} and MSE_{test}) for a good fit. However, for D > 3 dimensions, finding the right polynomial could be hard.

Kernel regression is a non-parametric method. It extends weighted *k*-NN (another non-parametric method) to the case of ______

• Its simplest form for 1D $\mathbf{x} = x$ is $f(x) = \sum_{i=1}^{N} w_i y_i$, where $w_i = \frac{k\left(\frac{x-x_i}{b}\right)}{\sum_{j=1}^{N} k\left(\frac{x-x_j}{b}\right)}$.¹

• f(x) is a _____ of $\{y_i\}$ since $\sum w_i = 1$.

- k() is a *kernel* that plays the role of a similarity function. Coefficients w_i are higher when x is similar to x_i and lower otherwise.
- The most common kernel is the _____ kernel, $k(z) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-z^2}{2}\right)$.

The $bandwidth \ b$ is a hyperparameter tuned using cross-validation.

e.g. Draw $\{(x_i, y_i)\}$ in nonlinear pattern. Add bell curves (wide, narrow, just right).

Python²

from localreg import localreg, rbf

y_hat = localreg(x, y, x0=None, degree=0, kernel=rbf.gaussian, radius=1) computes $\hat{y} = f(x)$ where

- x and y are values to fit
- x0 are values at which to compute $\{\hat{y}_i\}$; the default is to use x
- kernel is a function of one argument (there are many kernels besides rbf.gaussian; we can make our own)
- degree=0 corresponds to our weighted average
- radius is b

To learn more: https://pypi.org/project/localreg/

¹For vector input, $x_i - x$ is replaced by Euclidean distance $||\mathbf{x}_i - \mathbf{x}||$. Burkov uses factors $\frac{1}{N}$ in front of his f(x) sum and N in his w_i definition; I omitted them since $N\frac{1}{N} = 1$. Burkov uses $x_i - x$ and $x_j - x$ where I used their opposites to see that we're standardizing x using $\mu = x_i$ and $\sigma = b$; k() is symmetric, so this matters only for clarity (and compatibility with his §9).

²I have not found kernel regression in skikit-learn. However, the package localreg does it.