7 Problems and Solutions (Part 2 of 3)

Multiclass Classification

Multiclass classification uses \(C \geq 2 \) classes: \(y \in \{ \ldots \} \).

- ID3 and other decision trees are easy to change. e.g. For ID3, change from §3’s binary

\[
f_{\text{ID}3}(S) = \frac{1}{|S|} \sum_{(x,y) \in S} y
\]

to

\[
f_{\text{ID}3}(S, c) = P(y_i = c|x) = \frac{1}{|S|} \sum_{(x,y) \in S \text{ and }} 1
\]

for each \(y \in \{1, \ldots, C\} \).

- Logistic regression can be extended via the softmax function from §6.

Recall from §3: In logistic regression for two-class \(y \), we used \(\hat{P}_{w,b}(y = 1|x) = f_{w,b}(x) = \sigma(wx + b) = \frac{1}{1 + e^{-(wx + b)}} \). Here we used the standard logistic function, \(\sigma(t) = \frac{1}{1 + e^{-t}} \), which maps \(t \in \mathbb{R} \) to \((0, 1)\).

The softmax function generalizes to \(C > 2 \) dimensions as follows:

\[
\sigma(z) = [\sigma^{(1)}, \ldots, \sigma^{(C)}], \text{ where } \sigma^{(j)} = \frac{\exp\left(z^{(j)}\right)}{\sum_{k=1}^{C} \exp\left(z^{(k)}\right)}, \text{ which maps } \mathbb{R}^C \text{ to } (0, 1)^C. \text{ Since } \sum_{i=1}^{C} \sigma^{(i)} = 1, \text{ we can interpret } [\sigma^{(1)}, \ldots, \sigma^{(C)}] \text{ as a vector of probabilities, with } \sigma^{(i)} = \hat{P}(y = i), \text{ for } i \in \{1, \ldots, C\}.
\]

- For simple logistic regression, the input to the logistic function \(\sigma() \) is the linear function \(wx + b \).

- For multinomial logistic regression, the input to the softmax function \(\sigma() \) is a vector of \(C \) linear functions \(w_i x + b_i \), one for each \(i \in \{1, \ldots, C\} \). Burkov omits describing how \(\{w_i, b_i\} \) are trained.

- \(k\text{NN} \) still returns the \(\ldots \) among the \(k \) nearest neighbors; now “most frequent” is across \(C \geq 2 \) classes, not just \(C = 2 \).

\[\text{I think Burkov made a typo by writing “}y\text{” where I wrote “}1\text{” in the second sum. e.g. For } c = 1, \text{ his probability is the proportion of examples with } y = 1; \text{ but for } c = 2, \text{ his probability is twice the proportion of examples with } y = 2. \text{ Another way to write the required proportion is } f_{\text{ID}3}(S, c) = P(y_i = c|x) = \frac{1}{|S|} \sum_{(x,y) \in S} \delta(y, c), \text{ where } \delta(i, j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases} \text{ is the Kronecker delta function.} \]

\[\text{I wrote } f_{\text{ID}3}(S, c) \text{ where Burkov wrote } f_{\text{ID}3}(S) \text{ because his notation is ambiguous without specifying } c.\]

\[\text{We did not study §6: Neural Nets and Deep Learning, a STAT 453 topic.}\]
- SVM is naturally binary. It, and most other binary classifiers, can be extended by one vs. rest, which solves a C-class problem via C binary classifiers.

 e.g. For three classes, $y \in \{1, 2, 3\}$ (so $C = 3$):

 - $\frac{\text{times}}{}$ times, changing labels other than 1 to 0 in the first copy, labels other than 2 to 0 in the second, and labels other than 3 to 0 in the third.
 - Train three binary classifiers for 1 and 0, 2 and 0, and 3 and 0.
 - Classify a new x by choosing the most-certain (non-zero) prediction, where “certainty” is proportional to the $\frac{\text{from } x \text{ to the decision boundary}}{||w||}$. Regarding the distance:

 As in §1, the hyperplane $wx + b = 0$ has normal vector w and points on the normal line through some point z are given by $z + wt$ for $t \in \mathbb{R}$. The intersection is when $w(z + wt) + b = 0 \implies t = -\frac{wz + b}{||w||^2}$. The distance from z to the intersection point is $||z - (z + wt)|| = ||wt|| = ||w|| \cdot |t| = \frac{|wz + b|}{||w||}$. The signed distance is $\frac{wz + b}{||w||}$. (Well, I need to add “∗” to all my w’s and finally change my z to Burkov’s x.)

 Most classification algorithms either are convertible to multiclass or $\frac{\text{with which we can use this one-vs.-rest strategy}}{}$ with which we can use this one-vs.-rest strategy.

 e.g. Draw three sets of 2D points (1s, 2s, and 3s) and classify a new point.

Python

- Here is an encouraging note from the user guide linked below: “All classifiers in scikit-learn do multiclass classification $\frac{\text{}}{}$. You don’t need to use the sklearn.multiclass module unless you want to experiment with different multiclass strategies.”

To learn more:

³See https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html and its `decision_function(X)`. Note that `svm.LinearSVC()` is required for one-vs.-rest behavior; `svm.SVC()` uses a “one-vs.-one” method we did not discuss.
One-Class Classification

One-class classification identifies one class for which we have training data from everything else. For example, an IT department managing its computer network wants to detect anomalous traffic.

- **One-class Gaussian** models the training data with the multivariate normal distribution (MND) \(N_D(\mu_D, \Sigma_{D \times D}) \) whose probability density function is

\[
f_{\mu, \Sigma}(x) = \frac{\exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right)}{\sqrt{(2\pi)^D |\Sigma|}}
\]

where \(\Sigma^{-1} \) is the inverse and \(|\Sigma|\) is the determinant of covariance matrix \(\Sigma \).

We can interpret this as the probability \(x \) was from the distribution with parameters \(\mu \) indicating the center of the distribution and \(\Sigma \) determining its shape.

A new input \(x \) is in the one class if \(f_{\mu, \Sigma}(x) \) is above an experimentally-decided threshold.

For a more complex shape, we can use a mixture of Gaussians requiring one \((\mu, \Sigma)\) pair per Gaussian and parameters that allow combining the Gaussians into one pdf. See §9 for an application of such a mixture to the problem of density estimation soon.

- **One-class k-mean**\(^4\) is similar. It computes \(d(x) \) as the minimum distance from a new \(x \) to each of \(k \) cluster centers. If \(d \) is less than a threshold, \(x \) is in the class.

- **One-class kNN** is similar. Burkov omissions details.

- **One-class SVM** either:

 - separates training examples from each other by a hyperplane, maximizing the distance from hyperplane to the origin; or
 - makes a (hyper-)boundary around the data by minimizing its volume.

Burkov omits details. E.g.

For a more complex shape, we can use a mixture of Gaussians requiring one \((\mu, \Sigma)\) pair per Gaussian and parameters that allow combining the Gaussians into one pdf. See §9 for an application of such a mixture to the problem of density estimation soon.

\(^4\)Recall the 1D \(N(\mu, \sigma) \), whose pdf is \(f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} \) with mean \(\mu \) and standard deviation \(\sigma \).

\(^5\)k-means clustering is coming in §9.
Python

- `from sklearn import mixture;`
 - `clf = mixture.GaussianMixture(n_components=1)` gives a model for estimating $f_{\mu, \Sigma}(x)$.
 - `clf.fit(X)` fits the model to array $X_{N \times D}$.
 - `clf.means_` gives μ and `clf.covariances_` gives Σ.
 - `clf.score_samples(X)` gives the log-likelihood of each sample, so `np.exp(clf.score_samples(X))` gives $f_{\mu, \Sigma}(x)$ for each sample.
 - Choose a threshold, e.g. `np.quantile(a, q)` with $a=$likelihoods and small $q \in (0, 1)$.

To learn more:

- Examples:

Multi-Label Classification

Muti-label classification is required when several labels apply to a single example x.

e.g. A picture of a road in forested mountains has three labels: “conifer,” “mountain,” “road.”

- Transform each labeled example into several examples, each with one of the several original labels. Now we have a multiclass classification problem that can be solved with the ____________ strategy. Add a threshold hyperparameter, chosen using validation data, and the label for each class scoring above the threshold is assigned to x.

- Other natural multiclass algorithms (decision tree, logistic regression) give a score for each class, so again each class above the threshold is assigned.

- Where the number of values each label can take is small, we can convert a multi-label problem to a ________________ problem.

I am providing no python code for this section.
e.g. For images with two types of labels, medium $\in \{\text{photo, painting}\}$ and style $\in \{\text{portrait, landscape, other}\}$, create a new fake class for each combination:

<table>
<thead>
<tr>
<th>Fake class</th>
<th>Medium</th>
<th>Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>photo</td>
<td>portrait</td>
</tr>
<tr>
<td>2</td>
<td>photo</td>
<td>landscape</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>other</td>
</tr>
<tr>
<td>4</td>
<td>painting</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>painting</td>
<td>landscape</td>
</tr>
<tr>
<td>6</td>
<td>painting</td>
<td>other</td>
</tr>
</tbody>
</table>