7 Problems and Solutions (Part 2 of 3)

Multiclass Classification

Multiclass classification uses $C \ge 2$ classes: $y \in \{___\}$.

• ID3 and other decision trees are easy to change. e.g. For ID3, change from §3's binary

$$f_{ID3}(S) = \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} y$$

to

$$f_{ID3}(S,c) = P(y_i = c|\mathbf{x}) = \frac{1}{|S|} \sum_{(\mathbf{x},y)\in S \text{ and } ___} 1$$

for each $y \in \{1, ..., C\}$.

• Logisitic regression can be extended via the $softmax\ function\ from\ \S6:^2$

Recall from §3: In logistic regression for two-class y, we used $\hat{P}_{\mathbf{w},b}(y=1|\mathbf{x}) = f_{\mathbf{w},b}(\mathbf{x}) = \sigma(\mathbf{w}\mathbf{x}+b) = \frac{1}{1+e^{-(\mathbf{w}\mathbf{x}+b)}}$. Here we used the standard logistic function, $\sigma(t) = \frac{1}{1+e^{-t}}$, which maps $t \in \mathbb{R}$ to (0,1).

The softmax function generalizes to ${\cal C}>2$ dimensions as follows:

- For simple logistic regression, the input to the logistic function $\sigma()$ is the linear function $\mathbf{wx} + b$.
- For multinomial logistic regression, the input to the softmax function $\sigma()$ is a vector of C linear functions $\mathbf{w}_i\mathbf{x} + b_i$, one for each $i \in \{1, ..., C\}$. Burkov omits describing how $\{\mathbf{w}_i, b_i\}$ are trained.
- kNN still returns the _____ among the k nearest neighbors; now "most frequent" is across $C \ge 2$ classes, not just C = 2.

It think Burkov made a typo by writing "y" where I wrote "1" in the second sum. e.g. For c=1, his probability is the proportion of examples with y=1; but for c=2, his probability is twice the proportion of examples with y=2, which is 2 when all the examples in S have y=2. Another way to write the required proportion is $f_{ID3}(S,c)=P(y_i=c|\mathbf{x})=\frac{1}{|S|}\sum_{(\mathbf{x},y)\in S}\delta(y,c), \text{ where } \delta(i,j)=\begin{cases} 0 & \text{if } i\neq j\\ 1 & \text{if } i=j \end{cases}$ is the Kronecker delta function.

I wrote $f_{ID3}(S, c)$ where Burkov wrote $f_{ID3}(S)$ because his notation is ambiguous without specifying c.

²We did not study §6: Neural Nets and Deep Learning, a STAT 453 topic.

	s naturally binary. It, and most other binary classifiers, can be extended by $one \ vs.$ hich solves a C -class problem via C binary classifiers.
e.g. For	r three classes, $y \in \{1, 2, 3\}$ (so $C = 3$):
- <u>l</u> al	times, changing labels other than 1 to 0 in the first copy, bels other than 2 to 0 in the second, and labels other than 3 to 0 in the third.
- Tr	eain three binary classifiers for 1 and 0, 2 and 0, and 3 and 0.
is	lassify a new \mathbf{x} by choosing the most-certain (non-zero) prediction, where "certainty" proportional to the from \mathbf{x} to the decision boundary, $\mathbf{x} = \frac{\mathbf{w}^*\mathbf{x} + b^*}{ \mathbf{w}^* }$. Regarding the distance:
As lir w z	$ \mathbf{w}^* $. Regarding the distance. In \mathbf{w}^* in §1, the hyperplane $\mathbf{w}\mathbf{x} + b = 0$ has normal vector \mathbf{w} and points on the normal method that \mathbf{v} is a some point \mathbf{z} are given by $\mathbf{z} + \mathbf{w}t$ for $t \in \mathbb{R}$. The intersection is when $(\mathbf{z} + \mathbf{w}t) + b = 0 \implies t = -\frac{\mathbf{w}\mathbf{z} + b}{ \mathbf{w} ^2}$. The distance from \mathbf{z} to the intersection point is $\mathbf{z} - (\mathbf{z} + \mathbf{w}t) = \mathbf{w}t = \mathbf{w} \cdot t = \frac{ \mathbf{w}\mathbf{z} + b }{ \mathbf{w} }$. The signed distance is $\frac{\mathbf{w}\mathbf{z} + b}{ \mathbf{w} }$. (Well, I need add "*" to all my \mathbf{w} 's and finally change my \mathbf{z} to Burkov's \mathbf{x} .)
	lassification algorithms either are convertible to multiclass orhich we can use this one-vsrest strategy.
J	aw three sets of 2D points (1s, 2s, and 3s) and classify a new point.
Python	
multicle	an encouraging note from the user guide linked below: "All classifiers in scikit-learn do ass classification You don't need to use the sklearn.multiclass e unless you want to experiment with different multiclass strategies."
To learn mor	re:
• User gu	nide: https://scikit-learn.org/stable/modules/multiclass.html
• Referen	nce manual:
https:/	scikit-learn.org/stable/modules/classes.html?highlight=multiclass#module-sklearn.multiclass/
	ps://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html and its tion(X). Note that svm.LinearSVC() is required for one-vsrest behavior; svm.SVC() uses a

"one-vs.one" method we did not discuss.

One-Class Classification

One-class classification identifies one class for which we have training data from everything else. e.g. An IT department managing its computer network wants to detect anomalous traffic.

• One-class Gaussian models the training data with the multivariate normal distribution (MND) $N_D(\mu_D, \Sigma_{D \times D})$ whose probability density function is

$$f_{\mu,\Sigma}(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu)\right)}{\sqrt{(2\pi)^D |\mathbf{\Sigma}|}}$$

where Σ^{-1} is the *inverse* and $|\Sigma|$ is the *determinant* of covariance matrix Σ^{4} .

We can interpret this as the probability \mathbf{x} was from the distribution with parameters $\boldsymbol{\mu}$ indicating the center of the distribution and $\boldsymbol{\Sigma}$ determining its shape.

A new input \mathbf{x} is in the one class if $f_{\mu,\Sigma}(\mathbf{x})$ is above an experimentally-decided ______. e.g. Draw a D=1 $N(\mu,\sigma)$ curve over a few data points and indicate an outlier.

e.g. For D=2 examples, see Burkov's Figure 7.2 on p. 80. It is also p. 6 of

https://www.dropbox.com/s/esprbgjmOwc5afz/Chapter7.pdf?dl=0.

For a more complex shape, we can use a *mixture of Gaussians* requiring one (μ, Σ) pair per Gaussian and parameters that allow combinging the Gaussians into one pdf. See §9 for an application of such a mixture to the problem of density estimation soon.

- One-class k-means⁵ is similar. It computes $d(\mathbf{x})$ as the minimum distance from a new \mathbf{x} to each of k cluster centers. If d is less than a threshold, \mathbf{x} is in the class.
- \bullet One-class kNN is similar. Burkov omits details.
- One-class SVM either:
 - separates training examples from ______ by a hyperplane, maximizing the distance from hyperplane to the origin; or
 - makes a (hyper-)_____ boundary around the data by minimizing its volume.

Burkov omits details. e.g.

https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

⁴Recall the 1D $N(\mu, \sigma)$, whose pdf is $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ with mean μ and standard deviation σ .

 $^{^{5}}k$ -means clustering is coming in §9.

Python

- from sklearn import mixture:
 - clf = mixture.GaussianMixture(n_components=1) gives a model for estimating $f_{\mu,\Sigma}(\mathbf{x})$.
 - clf.fit(X) fits the model to array $X_{N\times D}$.
 - clf.means_ gives μ and clf.covariances_ gives Σ .
 - clf.score_samples(X) gives the log-likelihood of each sample, so np.exp(clf.score_samples(X)) gives $f_{\mu,\Sigma}(\mathbf{x})$ for each sample.
 - Choose a threshold, e.g. np.quantile(a, q) with a=likelihoods and small $q \in (0,1)$.

To learn more:

- User guide: https://scikit-learn.org/stable/modules/outlier_detection.html
 One-class Gaussian: https://scikit-learn.org/stable/modules/mixture.html
- Reference manual:

```
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
```

Examples:

```
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html
https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
```

Multi-Label Classification

Multi-label classification is required when several labels apply to a single example \mathbf{x} .⁶ e.g. A picture of a road in forested mountains has three labels: "conifer," "mountain," "road."

- Transform each labeled example into several examples, each with one of the several original labels. Now we have a multiclass classification problem that can be solved with the _____ strategy. Add a threshold hyperparameter, chosen using validation data, and the label for each class scoring above the threshold is assigned to x.
- Other natural multiclass algorithms (decision tree, logistic regression) give a score for each class, so again each class above the threshold is assigned.
- Where the number of values each label can take is small, we can convert a multi-label problem to a ______ problem.

⁶I am providing no python code for this section.

e.g. For images with two types of labels, medium \in {photo, painting} and style \in {portrait, landscape, other}, create a new fake class for each combination:

Fake class	Medium	Style
1	photo	portrait
2	photo	landscape
3		other
4	painting	
5	painting	landscape
6	painting	other