7 Problems and Solutions (Part 2 of 3)

Multiclass Classification

Multiclass classification uses $C \ge 2$ classes: $y \in \{1, \ldots, C\}$.

• ID3 and other decision trees are easy to change. e.g. For ID3, change from §3's binary

$$f_{ID3}(S) = \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} y$$

 to

$$f_{ID3}(S,c) = P(y_i = c | \mathbf{x}) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S \text{ and } y = c} 1$$

for each $y \in \{1, ..., C\}$.¹

• Logisitic regression can be extended via the *softmax function* from $\S6$:²

Recall from §3: In logistic regression for two-class y, we used $\hat{P}_{\mathbf{w},b}(y = 1|\mathbf{x}) = f_{\mathbf{w},b}(\mathbf{x}) = \sigma(\mathbf{w}\mathbf{x} + b) = \frac{1}{1+e^{-(\mathbf{w}\mathbf{x}+b)}}$. Here we used the standard logistic function, $\sigma(t) = \frac{1}{1+e^{-t}}$, which maps $t \in \mathbb{R}$ to (0, 1).

The softmax function generalizes to C > 2 dimensions as follows:

 $\sigma(\mathbf{z}) = [\sigma^{(1)}, \dots, \sigma^{(C)}], \text{ where } \sigma^{(j)} = \frac{\exp\left(z^{(j)}\right)}{\sum_{k=1}^{C} \exp\left(z^{(k)}\right)}, \text{ which maps } \mathbb{R}^{C} \text{ to } (0,1)^{C}. \text{ Since } \sum_{i=1}^{C} \sigma^{(i)} = 1, \text{ we can interpret } [\sigma^{(1)}, \dots, \sigma^{(C)}] \text{ as a vector of probabilities, with } \sigma^{(i)} = \hat{P}(y = i), \text{ for } i \in \{1, \dots, C\}.$

- For simple logistic regression, the input to the logistic function $\sigma()$ is the linear function $\mathbf{wx} + b$.
- For multinomial logistic regression, the input to the softmax function $\sigma()$ is a vector of C linear functions $\mathbf{w}_i \mathbf{x} + b_i$, one for each $i \in \{1, \ldots, C\}$. Burkov omits describing how $\{\mathbf{w}_i, b_i\}$ are trained.
- kNN still returns the most frequent class label among the k nearest neighbors; now "most frequent" is across $C \ge 2$ classes, not just C = 2.

I wrote $f_{ID3}(S, c)$ where Burkov wrote $f_{ID3}(S)$ because his notation is ambiguous without specifying c. ²We did not study §6: Neural Nets and Deep Learning, a STAT 453 topic.

¹I think Burkov made a typo by writing "y" where I wrote "1" in the second sum. e.g. For c = 1, his probability is the proportion of examples with y = 1; but for c = 2, his probability is twice the proportion of examples with y = 2, which is 2 when all the examples in S have y = 2. Another way to write the required proportion is $f_{ID3}(S,c) = P(y_i = c | \mathbf{x}) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S} \delta(y,c)$, where $\delta(i,j) = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$ is the Kronecker delta function.

- SVM is naturally binary. It, and most other binary classifiers, can be extended by *one vs. rest*, which solves a *C*-class problem via *C* binary classifiers.
 - e.g. For three classes, $y \in \{1, 2, 3\}$ (so C = 3):
 - Copy the data three times, changing labels other than 1 to 0 in the first copy, labels other than 2 to 0 in the second, and labels other than 3 to 0 in the third.
 - Train three binary classifiers for 1 and 0, 2 and 0, and 3 and 0.
 - Classify a new **x** by choosing the highest-certainty nonzero prediction, where "certainty" is given by the distance from input **x** to the decision boundary, $d = \frac{|\mathbf{w}^* \mathbf{x} + b^*|}{||\mathbf{w}^*||}$ (for an **x** on the correct side of the boundary).³

Most classification algorithms either are convertible to multiclass or give a score with which we can use this one-vs.-rest strategy.

Python

• Here is an encouraging note from the user guide linked below: "All classifiers in scikit-learn do multiclass classification out-of-the-box. You don't need to use the sklearn.multiclass module unless you want to experiment with different multiclass strategies."

To learn more:

- User guide: https://scikit-learn.org/stable/modules/multiclass.html
- Reference manual:

https://scikit-learn.org/stable/modules/classes.html?highlight=multiclass#module-sklearn.multiclass

One-Class Classification

One-class classification identifies one class for which we have training data from everything else.

e.g. An IT department managing its computer network wants to detect anomalous traffic.

• One-class Gaussian models the training data with the multivariate normal distribution (MND) $N_D(\mu_D, \Sigma_{D \times D})$ whose probability density function is

$$f_{\boldsymbol{\mu},\boldsymbol{\Sigma}}(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^T\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)}{\sqrt{(2\pi)^D|\boldsymbol{\Sigma}|}}$$

where Σ^{-1} is the *inverse* and $|\Sigma|$ is the *determinant* of covariance matrix Σ^{4} .

³I think Burkov made typos in his $d = \frac{\mathbf{w}^* \mathbf{x} + b^*}{||w||}$. The |.| is necessary when $\mathbf{w}^* \mathbf{x} + b^* < 0$. ||w|| should be $||\mathbf{w}^*||$. ⁴Recall the 1D $N(\mu, \sigma)$, whose pdf is $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ with mean μ and standard deviation σ . We can interpret this as the probability \mathbf{x} was from the distribution with parameters $\boldsymbol{\mu}$ indicating the center of the distribution and $\boldsymbol{\Sigma}$ determining its shape.

A new input **x** is in the one class if $f_{\mu,\Sigma}(\mathbf{x})$ is above an experimentally-decided threshold.

e.g. Draw a $D = 1 N(\mu, \sigma)$ curve over a few data points and indicate an outlier.

e.g. For D = 2 examples, see Burkov's Figure 7.2 on p. 80. It is also p. 6 of

https://www.dropbox.com/s/esprbgjm0wc5afz/Chapter7.pdf?dl=0.

For a more complex shape, we can use a *mixture of Gaussians* requiring one (μ, Σ) pair per Gaussian and parameters that allow combinging the Gaussians into one pdf. See §9 for an application of such a mixture to the problem of density estimation clustering soon.

- One-class k-means⁵ is similar. It computes $d(\mathbf{x})$ as the minimum distance from a new \mathbf{x} to each of k cluster centers. If d is less than a threshold, \mathbf{x} is in the class.
- One-class kNN is similar. Burkov omits details.
- One-class SVM either:
 - separates training examples from the origin by a hyperplane, maximizing the distance from hyperplane to the origin; or
 - makes a (hyper-)spherical boundary around the data by minimizing its volume.

Burkov omits details. e.g.

https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

Python

- from sklearn import mixture:
 - clf = mixture.GaussianMixture(n_components=1) gives a model for estimating $f_{\mu,\Sigma}(\mathbf{x})$.
 - clf.fit(X) fits the model to array $X_{N \times D}$.
 - clf.means_ gives μ and clf.covariances_ gives Σ .
 - clf.score_samples(X) gives the log-likelihood of each sample, so np.exp(clf.score_samples(X)) gives $f_{\mu,\Sigma}(\mathbf{x})$ for each sample.
 - We can choose a threshold, e.g. from np.quantile(a, q), passing likelihoods as a and some small threshold q ∈ (0,1).

To learn more:

• User guide: https://scikit-learn.org/stable/modules/outlier_detection.html One-class Gaussian: https://scikit-learn.org/stable/modules/mixture.html

 $^{{}^{5}}k$ -means clustering is coming in §9.

• Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

```
Examples:
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html
https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
```

Multi-Label Classification

Multi-label classification is required when several labels apply to a single example \mathbf{x}^{6}

e.g. A picture of a road in forested mountains has three labels: "conifer," "mountain," "road."

- Transform each labeled example into several examples, each with one of the several original labels. Now we have a multiclass classification problem that can be solved with the one-vs.-rest strategy. Add a threshold hyperparameter, chosen using validation data, and the label for each class scoring above the threshold is assigned to \mathbf{x} .
- Other natural multiclass algorithms (decision tree, logistic regression) give a score for each class, so again each class above the threshold is assigned.
- Where the number of values each label can take is small, we can convert a multi-label problem to a multiclass problem.

e.g. For images with two types of labels, medium \in {photo, painting} and style \in {portrait, landscape, other}, create a new fake class for each combination:

Fake class	Medium	Style
1	photo	portrait
2	photo	landscape
3	photo	other
4	painting	portrait
5	painting	landscape
6	painting	other

⁶I am providing no python code for this section.