7 Problems and Solutions (Part 2 of 3)

Multiclass Classification

Multiclass classification uses $C \geq 2$ classes: $y \in \{______\}$.

ID3 and other decision trees are easy to change. e.g. For ID3, change from §3's binary

$$
f_{ID3}(S) = \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} y
$$

to

$$
f_{ID3}(S, c) = P(y_i = c | \mathbf{x}) = \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S \text{ and } _}
$$
 1

for each $y \in \{1, ..., C\}$ $y \in \{1, ..., C\}$ $y \in \{1, ..., C\}$ ¹

• Logisitic regression can be extended via the *softmax function* from $\S6$ ^{[2](#page-0-1)}

Recall from §3: In logistic regression for two-class y, we used $\hat{P}_{\mathbf{w},b}(y=1|\mathbf{x}) = f_{\mathbf{w},b}(\mathbf{x}) =$ $\sigma(\mathbf{wx} + b) = \frac{1}{1 + e^{-(\mathbf{wx} + b)}}$. Here we used the standard logistic function, $\sigma(t) = \frac{1}{1 + e^{-t}}$, which maps $t \in \mathbb{R}$ to $(0, 1)$.

The softmax function generalizes to $C > 2$ dimensions as follows:

 $\sigma(\mathbf{z}) = [\sigma^{(1)}, \ldots, \sigma^{(C)}],$ where $\sigma^{(j)} = \frac{\exp(z^{(j)})}{\sum_{i=1}^{C} z^{(j)}}$ $\frac{\exp(z^{(k)})}{\sum_{k=1}^C \exp(z^{(k)})}$, which maps \mathbb{R}^C to $(0,1)^C$. Since $\sum_{i=1}^C \sigma^{(i)} =$ we can interpret $[\sigma^{(1)}, \ldots, \sigma^{(C)}]$ as a vector of probabilities, with $\sigma^{(i)} =$ $\hat{P}(y = i)$, for $i \in \{1, ..., C\}$.

- For simple logistic regression, the input to the logistic function $\sigma()$ is the linear function $\mathbf{w} \mathbf{x} + b$.
- For multinomial logistic regression, the input to the softmax function $\sigma()$ is a vector of C linear functions $\mathbf{w}_i \mathbf{x} + b_i$, one for each $i \in \{1, ..., C\}$. Burkov omits describing how $\{\mathbf w_i, b_i\}$ are trained.
- k NN still returns the $\frac{1}{k}$ among the k nearest neighbors; now "most frequent" is across $C \geq 2$ classes, not just $C = 2$.

I wrote $f_{ID3}(S, c)$ where Burkov wrote $f_{ID3}(S)$ because his notation is ambiguous without specifying c. ²We did not study §6: Neural Nets and Deep Learning, a STAT 453 topic.

¹I think Burkov made a typo by writing "y" where I wrote "1" in the second sum. e.g. For $c = 1$, his probability is the proportion of examples with $y = 1$; but for $c = 2$, his probability is twice the proportion of examples with $y = 2$, which is 2 when all the examples in S have $y = 2$. Another way to write the required proportion is $f_{ID3}(S, c) = P(y_i = c|\mathbf{x}) = \frac{1}{|S|}$ \sum $(\mathbf{x},y) \in S$ $\delta(y, c)$, where $\delta(i, j) = \begin{cases} 0 \text{ if } i \neq j \\ 0 \text{ if } j \neq j \end{cases}$ 1 if $i = j$ is the *Kronecker delta* function.

- SVM is naturally binary. It, and most other binary classifiers, can be extended by one vs. rest, which solves a C -class problem via C binary classifiers.
	- e.g. For three classes, $y \in \{1, 2, 3\}$ (so $C = 3$):
		- times, changing labels other than 1 to 0 in the first copy, labels other than 2 to 0 in the second, and labels other than 3 to 0 in the third.
		- Train three binary classifiers for 1 and 0, 2 and 0, and 3 and 0.
		- Classify a new x by choosing the most-certain (non-zero) prediction, where "certainty" is proportional to the from x to the decision boundary,^{[3](#page-1-0)} $d = \frac{\mathbf{w}^* \mathbf{x} + b^*}{\mathbf{w}^* + b^*}$ $\frac{d\mathbf{x} + \mathbf{v}}{||\mathbf{w}^*||}$. Regarding the distance:

As in §1, the hyperplane $\mathbf{w} \cdot \mathbf{x} + b = 0$ has normal vector **w** and points on the normal line through some point **z** are given by $z + wt$ for $t \in \mathbb{R}$. The intersection is when $\mathbf{w}(\mathbf{z} + \mathbf{w}t) + b = 0 \implies t = -\frac{\mathbf{w}\mathbf{z} + b}{\|\mathbf{w}\|^2}$. The distance from **z** to the intersection point is $||\mathbf{z} - (\mathbf{z} + \mathbf{w}t)|| = ||\mathbf{w}|| \cdot ||\mathbf{w}|| \cdot ||t|| = \frac{|\mathbf{w}\mathbf{z}+b|}{||\mathbf{w}||}$. The signed distance is $\frac{\mathbf{w}\mathbf{z}+b}{||\mathbf{w}||}$. (Well, I need to add "*" to all my \mathbf{w} 's and finally change my \mathbf{z} to Burkov's $\mathbf{x}.)$

Most classification algorithms either are convertible to multiclass or with which we can use this one-vs.-rest strategy.

e.g. Draw three sets of 2D points (1s, 2s, and 3s) and classify a new point.

Python

 Here is an encouraging note from the user guide linked below: "All classifiers in scikit-learn do multiclass classification . You don't need to use the sklearn.multiclass module unless you want to experiment with different multiclass strategies."

To learn more:

- User guide: <https://scikit-learn.org/stable/modules/multiclass.html>
- Reference manual:

<https://scikit-learn.org/stable/modules/classes.html?highlight=multiclass#module-sklearn.multiclass>

 3 See <https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html> and its decision function(X). Note that svm.LinearSVC() is required for one-vs.-rest behavior; svm.SVC() uses a "one-vs.one" method we did not discuss.

One-Class Classification

One-class classification identifies one class for which we have training data from everything else.

- e.g. An IT department managing its computer network wants to detect anomalous traffic.
	- One-class Gaussian models the training data with the multivariate normal distribution (MND) $N_D(\mu_D, \Sigma_{D\times D})$ whose probability density function is

$$
f_{\mu,\Sigma}(\mathbf{x}) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right)}{\sqrt{(2\pi)^D |\Sigma|}}
$$

where Σ^{-1} is the *inverse* and Σ is the *determinant* of covariance matrix Σ ^{[4](#page-2-0)}

We can interpret this as the probability x was from the distribution with parameters μ indicating the center of the distribution and Σ determining its shape.

A new input **x** is in the one class if $f_{\mu,\Sigma}(\mathbf{x})$ is above an experimentally-decided ____________.

e.g. Draw a $D = 1$ $N(\mu, \sigma)$ curve over a few data points and indicate an outlier.

e.g. For $D = 2$ examples, see Burkov's Figure 7.2 on p. 80. It is also p. 6 of

<https://www.dropbox.com/s/esprbgjm0wc5afz/Chapter7.pdf?dl=0>.

For a more complex shape, we can use a *mixture of Gaussians* requiring one (μ, Σ) pair per Gaussian and parameters that allow combinging the Gaussians into one pdf. See §9 for an application of such a mixture to the problem of density estimation soon.

- One-class k-means^{[5](#page-2-1)} is similar. It computes $d(\mathbf{x})$ as the minimum distance from a new **x** to each of k cluster centers. If d is less than a threshold, x is in the class.
- \bullet One-class kNN is similar. Burkov omits details.
- One-class SVM either:
	- separates training examples from by a hyperplane, maximizing the distance from hyperplane to the origin; or
	- makes a (hyper-)_____________ boundary around the data by minimizing its volume.

Burkov omits details. e.g.

https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

⁴Recall the 1D $N(\mu, \sigma)$, whose pdf is $f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} (\frac{x-\mu}{\sigma})^2}$ with mean μ and standard deviation σ . $5k$ -means clustering is coming in §9.

Python

- from sklearn import mixture:
	- clf = mixture.GaussianMixture(n_components=1) gives a model for estimating $f_{\mu,\Sigma}(\mathbf{x})$.
	- clf.fit(X) fits the model to array $X_{N\times D}$.
	- clf.means_ gives μ and clf.covariances_ gives Σ .
	- clf.score_samples(X) gives the log-likelihood of each sample, so np.exp(clf.score_samples(X)) gives $f_{\mu,\Sigma}(\mathbf{x})$ for each sample.
	- Choose a threshold, e.g. np.quantile(a, q) with a=likelihoods and small q ∈ (0, 1).

To learn more:

- User guide: https://scikit-learn.org/stable/modules/outlier_detection.html One-class Gaussian: <https://scikit-learn.org/stable/modules/mixture.html>
- Reference manual:

```
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
```

```
Examples:
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html
https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html
```
Multi-Label Classification

Multi-label classification is required when several labels apply to a single example x .^{[6](#page-3-0)}

- e.g. A picture of a road in forested mountains has three labels: "conifer," "mountain," "road."
	- Transform each labeled example into several examples, each with one of the several original labels. Now we have a multiclass classification problem that can be solved with the strategy. Add a threshold hyperparameter, chosen using validation data, and the label for each class scoring above the threshold is assigned to x.
	- Other natural multiclass algorithms (decision tree, logistic regression) give a score for each class, so again each class above the threshold is assigned.
	- Where the number of values each label can take is small, we can convert a multi-label problem to a problem.

⁶ I am providing no python code for this section.

e.g. For images with two types of labels, medium \in {photo, painting} and style \in {portrait, landscape, other}, create a new fake class for each combination:

Fake class	Medium	Style
1	photo	portrait
2	photo	landscape
3		other
	painting	
5	painting	landscape
	painting	other