
7 Problems and Solutions (Part 2 of 3)

Multiclass Classification

Multiclass classification uses C ≥ 2 classes: y ∈ { }.

� ID3 and other decision trees are easy to change. e.g. For ID3, change from §3’s binary

fID3(S) =
1

|S|
∑

(x,y)∈S

y

to

fID3(S, c) = P (yi = c|x) = 1

|S|
∑

(x,y)∈S and

1

for each y ∈ {1, . . . , C}.1

� Logisitic regression can be extended via the softmax function from §6:2

Recall from §3: In logistic regression for two-class y, we used P̂w,b(y = 1|x) = fw,b(x) =
σ(wx + b) = 1

1+e−(wx+b) . Here we used the standard logistic function, σ(t) = 1
1+e−t , which

maps t ∈ R to (0, 1).

The softmax function generalizes to C > 2 dimensions as follows:

σ(z) = [σ(1), . . . , σ(C)], where σ(j) =
exp

(
z(j)

)∑C
k=1 exp

(
z(k)

) , which maps RC to (0, 1)C . Since∑C
i=1 σ

(i) = , we can interpret [σ(1), . . . , σ(C)] as a vector of probabilities, with σ(i) =

P̂ (y = i), for i ∈ {1, . . . , C}.

– For simple logistic regression, the input to the logistic function σ() is the linear function
wx+ b.

– For multinomial logistic regression, the input to the softmax function σ() is a vector of
C linear functions wix + bi, one for each i ∈ {1, . . . , C}. Burkov omits describing how
{wi, bi} are trained.

� kNN still returns the among the k nearest neighbors;
now “most frequent” is across C ≥ 2 classes, not just C = 2.

1I think Burkov made a typo by writing “y” where I wrote “1” in the second sum. e.g. For c = 1, his probability
is the proportion of examples with y = 1; but for c = 2, his probability is twice the proportion of examples with
y = 2, which is 2 when all the examples in S have y = 2. Another way to write the required proportion is

fID3(S, c) = P (yi = c|x) = 1

|S|
∑

(x,y)∈S

δ(y, c), where δ(i, j) =

{
0 if i ̸= j

1 if i = j
is the Kronecker delta function.

I wrote fID3(S, c) where Burkov wrote fID3(S) because his notation is ambiguous without specifying c.
2We did not study §6: Neural Nets and Deep Learning, a STAT 453 topic.



� SVM is naturally binary. It, and most other binary classifiers, can be extended by one vs.
rest, which solves a C-class problem via C binary classifiers.

e.g. For three classes, y ∈ {1, 2, 3} (so C = 3):

– times, changing labels other than 1 to 0 in the first copy,
labels other than 2 to 0 in the second, and labels other than 3 to 0 in the third.

– Train three binary classifiers for 1 and 0, 2 and 0, and 3 and 0.

– Classify a new x by choosing the most-certain (non-zero) prediction, where “certainty”
is proportional to the from x to the decision boundary,3

d =
w∗x+ b∗

||w∗||
. Regarding the distance:

As in §1, the hyperplane wx + b = 0 has normal vector w and points on the normal
line through some point z are given by z + wt for t ∈ R. The intersection is when
w(z + wt) + b = 0 =⇒ t = −wz+b

||w||2 . The distance from z to the intersection point is

||z− (z+wt)|| = ||wt|| = ||w|| · |t| = |wz+b|
||w|| . The signed distance is wz+b

||w|| . (Well, I need

to add “∗” to all my w’s and finally change my z to Burkov’s x.)

Most classification algorithms either are convertible to multiclass or
with which we can use this one-vs.-rest strategy.

e.g. Draw three sets of 2D points (1s, 2s, and 3s) and classify a new point.

Python

� Here is an encouraging note from the user guide linked below: “All classifiers in scikit-learn do
multiclass classification . You don’t need to use the sklearn.multiclass
module unless you want to experiment with different multiclass strategies.”

To learn more:

� User guide: https://scikit-learn.org/stable/modules/multiclass.html

� Reference manual:

https://scikit-learn.org/stable/modules/classes.html?highlight=multiclass#module-sklearn.multiclass

3See https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html and its
decision function(X). Note that svm.LinearSVC() is required for one-vs.-rest behavior; svm.SVC() uses a
“one-vs.one” method we did not discuss.

https://scikit-learn.org/stable/modules/multiclass.html
https://scikit-learn.org/stable/modules/classes.html?highlight=multiclass#module-sklearn.multiclass
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html


One-Class Classification

One-class classification identifies one class for which we have training data from everything else.

e.g. An IT department managing its computer network wants to detect anomalous traffic.

� One-class Gaussian models the training data with themultivariate normal distribution (MND)
ND(µD,ΣD×D) whose probability density function is

fµ,Σ(x) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)√

(2π)D|Σ|

where Σ−1 is the inverse and |Σ| is the determinant of covariance matrix Σ.4

We can interpret this as the probability x was from the distribution with parameters µ
indicating the center of the distribution and Σ determining its shape.

A new input x is in the one class if fµ,Σ(x) is above an experimentally-decided .

e.g. Draw a D = 1 N(µ, σ) curve over a few data points and indicate an outlier.

e.g. For D = 2 examples, see Burkov’s Figure 7.2 on p. 80. It is also p. 6 of

https://www.dropbox.com/s/esprbgjm0wc5afz/Chapter7.pdf?dl=0.

For a more complex shape, we can use a mixture of Gaussians requiring one (µ,Σ) pair per
Gaussian and parameters that allow combinging the Gaussians into one pdf. See §9 for an
application of such a mixture to the problem of density estimation soon.

� One-class k-means5 is similar. It computes d(x) as the minimum distance from a new x to
each of k cluster centers. If d is less than a threshold, x is in the class.

� One-class kNN is similar. Burkov omits details.

� One-class SVM either:

– separates training examples from by a hyperplane, maximizing the
distance from hyperplane to the origin; or

– makes a (hyper-) boundary around the data by minimizing its volume.

Burkov omits details. e.g.

https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

4Recall the 1D N(µ, σ), whose pdf is f(x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

with mean µ and standard deviation σ.

5k-means clustering is coming in §9.

https://www.dropbox.com/s/esprbgjm0wc5afz/Chapter7.pdf?dl=0
https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html


Python

� from sklearn import mixture:

– clf = mixture.GaussianMixture(n_components=1) gives a model for estimating fµ,Σ(x).

– clf.fit(X) fits the model to array XN×D.

– clf.means_ gives µ and clf.covariances_ gives Σ.

– clf.score_samples(X) gives the log-likelihood of each sample, so np.exp(clf.score_samples(X))
gives fµ,Σ(x) for each sample.

– Choose a threshold, e.g. np.quantile(a, q) with a=likelihoods and small q ∈ (0, 1).

To learn more:

� User guide: https://scikit-learn.org/stable/modules/outlier_detection.html

One-class Gaussian: https://scikit-learn.org/stable/modules/mixture.html

� Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html

Examples:

https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html

https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html

Multi-Label Classification

Multi-label classification is required when several labels apply to a single example x.6

e.g. A picture of a road in forested mountains has three labels: “conifer,” “mountain,” “road.”

� Transform each labeled example into several examples, each with one of the several orig-
inal labels. Now we have a multiclass classification problem that can be solved with the

strategy. Add a threshold hyperparameter, chosen using validation
data, and the label for each class scoring above the threshold is assigned to x.

� Other natural multiclass algorithms (decision tree, logistic regression) give a score for each
class, so again each class above the threshold is assigned.

� Where the number of values each label can take is small, we can convert a multi-label problem
to a problem.

6I am providing no python code for this section.

https://scikit-learn.org/stable/modules/outlier_detection.html
https://scikit-learn.org/stable/modules/mixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/auto_examples/mixture/plot_gmm_pdf.html
https://scikit-learn.org/stable/auto_examples/svm/plot_oneclass.html


e.g. For images with two types of labels, medium ∈ {photo, painting} and style ∈ {portrait,
landscape, other}, create a new fake class for each combination:

Fake class Medium Style
1 photo portrait
2 photo landscape
3 other
4 painting
5 painting landscape
6 painting other


