8 Advanced Practice

Handling Imbalanced Datasets

An ___________ dataset has one class under-represented.

e.g. Fraudulent e-commerce transactions are much less common than genuine ones. Noise puts genuine ones on the wrong side of the desired decision boundary, moving it to a __________ place.

Possible solutions:

- For SVM, we can assign ___________ to the minority class.

e.g. For binary SVM, instead of finding soft-margin’s

 \[
 \arg\min_w, b \left[\frac{1}{2} ||w||^2 + C \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(wx_i + b)) \right],
 \]

 we find something like

 \[
 \arg\min_w, b \left[\frac{1}{2} ||w||^2 + C \frac{1}{N} \left(\sum_{(x_i, y_i) | y_i = -1} \max(0, 1 - y_i(wx_i + b)) + \sum_{(x_i, y_i) | y_i = +1} \max(0, 1 - y_i(wx_i + b)) \right) \right]
 \]

 where \(C_1 \) and \(C_2 \) are regularization parameters that can be set as ___________ .

e.g. See Burkov’s Figure 8.1 on p. 98 (p. 3 of _www.dropbox.com/s/im1s2skkaikzrrs/Chapter8.pdf?dl=0_).

 The same problem (before re-weighting imbalanced data) arises with most algorithms.

 - ___________ adds multiple copies of minority class examples.

 - ___________ randomly removes some majority class examples.

 - Create ___________ examples by combining randomly sampled feature values from several examples of minority class.

Do train_test_split() ___________ addressing imbalance so that test data are ____________.

Python

- The svm.SVC() we know\(^1\) has a class_weight parameter:

 - The default None gives weights \(C_1 = C_2 = 1 \) to each class.

 - It can be a dictionary of label: value pairs (where value > 0) like \{0: C_1, 1: C_2\}.

 - Using 'balanced' gives weights inversely proportional to class counts in training data as \(N / (n_classes * np.bincount(y)) \); e.g.

\(^1\) svm.SVC(kernel='linear', C=1) for soft-margin linear SVM (or C=1000 for hard-margin),
 svm.SVC(kernel='rbf', C=1, gamma='scale') for kernel trick for nonlinear boundary
```python
y = np.array([0, 0, 0, 0, 0, 1])  # 5 zeros, 1 one
N = y.shape  # 6
counts = np.bincount(y)  # array([5, 1])
n_classes = counts.shape  # 2
C_1, C_2 = N / (n_classes * counts)  # 0.6, 3

- For over- and undersampling:

  from imblearn.over_sampling import RandomOverSampler
  rs = RandomOverSampler(random_state=None)
  X_resampled, y_resampled = rs.fit_resample(X, y)

  from imblearn.under_sampling import RandomUnderSampler
  rs = RandomUnderSampler(random_state=None)
  X_resampled, y_resampled = rs.fit_resample(X, y)

  e.g.

  X = np.array([1, 2, 3, 4, 5, 6]).reshape(-1, 1)
y = np.array([0, 0, 0, 0, 1, 1])

  rs = RandomOverSampler()
  X_resampled, y_resampled = rs.fit_resample(X, y)
  print(f'Oversampling: X_resampled={X_resampled}, y_resampled={y_resampled}')

  rs = RandomUnderSampler()
  X_resampled, y_resampled = rs.fit_resample(X, y)
  print(f'Undersampling: X_resampled={X_resampled}, y_resampled={y_resampled}')

To learn more:

- User guide:

- Reference manual:

- Example:

---

2 Do “New > Terminal” and then run conda install -c conda-forge imbalanced-learn to install package.
3 Click on “launch binder” to run it online. Note class_weight={1: 10}, which leaves class 0 at the default weight of 1). Also try class_weight={0: 1, 1: 1} (balanced) and class_weight={0: 12, 1: 10} (almost balanced).
Combining Models

While ensemble methods like random forests combine several similar weak models, we can also combine different models:

- Combine the predictions (regression) or scores (classification) of several models.
- **Majority vote** applies several models and returns the predicted class. (Resolve a tie by choosing randomly or returning an error (or use an odd number of models).)
- **Stacking** builds a meta-model whose input is the output of several base models. e.g. To combine models $f_1$ and $f_2$ that predict from the same set of classes, create a training example $(x'_i, y'_i)$ for the stacked model as $(x'_i = [f_1(x_i), f_2(x_i)], y'_i = y_i)$ and train a meta-model on the new examples. Tune hyperparameters with cross-validation. Comparatave notes:
  - Stacking uses from the base models (scores across $C$ class labels) than averaging or majority voting (single best class label from among $C$ labels).
  - Stacking uses models on the same data, while bagging uses the model on different (bootstrap resampled) data.
  - Stacking uses to combine predictions from base models, while boosting uses a sequence of models in which the next model tries to correct the current one.

Base models should be by being made from different features or different algorithms.

Python

- `from sklearn.ensemble import StackingClassifier, StackingRegressor`
  
  `clf = StackingClassifier(estimators, final_estimator=None)`
  
  `model = StackingRegressor(estimators, final_estimator=None)`

  `estimators` is a list of tuples `(string name, estimator)` giving the models to be stacked.
  
  `final_estimator` uses the output of `estimators` as input.

To learn more:

- Reference manual:
- Example:

---

$^4 f_1(x_i)$ is the output of `clf1.predict_proba(x)` or `clf1.decision_function(x)` or `model1.predict(x)`. 
Algorithm Efficiency

The efficiency of algorithms reveals the computational complexity of algorithms in terms of the time (or memory or other resources) they require. We use \textit{Big-O notation} to write time as a function of input size \( N \), and then constants and lower-order terms.

- Suppose a program running on input of size \( n \) has run time \( f(n) \) seconds.
- \textit{Big-O} gives an upper bound on run-time to within a constant factor. A function \( f(n) \) is said to be \( O(g(n)) \) if there exist constants \( C \) and \( N \) such that \( f(n) < C \cdot g(n) \) for all \( n > N \).
- Read “\( f(n) = O(g(n)) \)” as “\( f(n) \) is big-O of \( g(n) \).”
- Here are some typical \( g(n) \) functions in increasing order:
  - \( g(n) = 1 \), e.g. \textit{by index i}
  - \( g(n) = \log_2(n) \), e.g. \textit{in sorted array}
  - \( g(n) = n \), e.g. \textit{}
  - \( g(n) = n \log_2(n) \), e.g. \textit{clever comparison}
  - \( g(n) = n^2 \), e.g. \textit{}
  - \( g(n) = n^3 \), e.g. \textit{matrix }
  - \( g(n) = n! \), e.g. \textit{traveling salesman via}
- Just reading a data set of size \( n \) is \( O(\ ) \), so an \( O(n) \) algorithm (that runs only once) counts as \( \). Since \( \log_2(n) \) is small for typical \( n \), an \( O(n \log_2(n)) \) algorithm is often fast enough. Programs taking \( O(n^2) \) or more time may work for small \( n \) but can be \( \) for large \( n \).
- The \textit{of} the algorithm usually matters a lot more than processor speed, coding skill, programming language, etc.
- If we cannot figure out the \( O() \) formula, we can \textit{the code for several dataset sizes \( N \)} and make a graph of time vs. \( N \). e.g.
  ```python
 start = time.time() # get time in seconds since "time started" (often 1/1/1970)
 # ... code that requires timing goes here ...
 end = time.time()
 seconds = end - start
 print(f'The code took {seconds} seconds.')
  ```
- When the time is too long on \( N \) examples, work with a \textit{randomly-selected subset.}

To learn more:

- \url{https://scikit-learn.org/stable/computing/computational_performance.html}
- \url{https://scikit-learn.org/stable/developers/performance.html}
- \url{https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms}
Multicore computing to speed up computation

In *multicore* computing, an algorithm is run on multiple CPU cores.

Python

Some estimators support multicore computing via an parameter: set `n_jobs=None` to use one core, `n_jobs=n` to use `n`, or `n_jobs=-1` to use all. Find #CPUs via

```python
import os # operating system interfaces (https://docs.python.org/3/library/os.html)
n_CPU = os.cpu_count()
```

Multicore methods include:

- §3: KNeighborsClassifier(), KNeighborsRegressor()
- §5: cross_val_score(), GridSearchCV(), RandomizedSearchCV()
- §5: permutation_importance()
- §7: BaggingRegressor(), BaggingClassifier(), RandomForestRegressor(), RandomForestClassifier()
- §8: StackingClassifier(), StackingRegressor()

To learn more:


---

Amdahl’s law ([https://en.wikipedia.org/wiki/Amdahl%27s_law](https://en.wikipedia.org/wiki/Amdahl%27s_law)) says “Don’t expect ________________.”