8 Advanced Practice

Handling Imbalanced Datasets

An dataset has one class under-represented.

e.g. Fraudulent e-commerce transactions are much less common than genuine ones. Noise puts genuine ones on the wrong side of the desired decision boundary, moving it to a place.

Possible solutions:

• For SVM, we can assign \qquad to the minority class.

e.g. For binary SVM, instead of finding soft-margin's

 $\operatorname{argmin}_{\mathbf{w},b} \left[\frac{1}{2} \right]$ $\frac{1}{2}||\mathbf{w}||^2 + C\frac{1}{N}$ $\frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(\mathbf{wx}_i + b))\Big]$, we find something like

$$
\operatorname{argmin}_{\mathbf{w},b} \left[\frac{1}{2} ||\mathbf{w}||^2 + C \frac{1}{N} \left(C_1 \sum_{\{(\mathbf{x}_i,y_i)|y_i=-1\}} \max(0,1-y_i(\mathbf{wx}_i+b)) + C_2 \sum_{\{(\mathbf{x}_i,y_i)|y_i=+1\}} \max(0,1-y_i(\mathbf{wx}_i+b)) \right) \right]
$$

where C_1 and C_2 are regularization parameters that can be set as $\sqrt{}$

e.g. See Burkov's Figure 8.1 on p. 98 (p. 3 of <www.dropbox.com/s/im1s2skkaikzrrs/Chapter8.pdf?dl=0>). The same problem (before re-weighting imbalanced data) arises with most algorithms.

- adds multiple copies of minority class examples.
- **EXECUTE:** randomly removes some majority class examples.
- Create examples by combining randomly sampled feature values from several examples of minority class.

Do train_test_split() addressing imbalance so that test data are _______________

Python

- The svm.SVC() we know^{[1](#page-0-0)} has a class_weight parameter:
	- The default None gives weights $C_1 = C_2 = 1$ to each class.
	- It can be a dictionary of label: value pairs (where value > 0) like {0: C_1, 1: C_2}.
	- Using 'balanced' gives weights inversely proportional to class counts in training data as N / (n_classes $*$ np.bincount(y)); e.g.

 1 svm.SVC(kernel='linear', C=1) for soft-margin linear SVM (or C=1000 for hard-margin),

svm.SVC(kernel='rbf', C=1, gamma='scale') for kernel trick for nonlinear boundary

```
y = np.array([0, 0, 0, 0, 0, 1]) # 5 zeros, 1 oneN = y. shape # 6
counts = np.bincount(y) # array([5, 1])n_classes = counts.shape # 2
C_1, C_2 = N / (n_{classes} * counts) # 0.6, 3
```
• For over- and undersampling, 2 2

```
– from imblearn.over_sampling import RandomOverSampler
    rs = RandomOverSampler(random_state=None)
    X_rresampled, y_rresampled = rs.fit_resample(X, y)– from imblearn.under_sampling import RandomUnderSampler
    rs = RandomUnderSampler(random_state=None)
    X_rresampled, y_rresampled = rs.fit_resample(X, y)e.g.
  X = np.array([1, 2, 3, 4, 5, 6]). reshape(-1, 1)y = np.array([0, 0, 0, 0, 1, 1])rs = RandomOverSampler()
  X_rresampled, y_rresampled = rs.fit_resample(X, y)print(f'Oversampling: X_resampled={X_resampled},\ny_resampled={y_resampled}')
  rs = RandomUnderSampler()
  X_rresampled, y_rresampled = rs.fit_resample(X, y)
```

```
print(f'Undersampling: X_resampled={X_resampled},\ny_resampled={y_resampled}')
```
To learn more:

User guide:

```
https://scikit-learn.org/stable/modules/svm.html#unbalanced-problems
https://imbalanced-learn.org/stable/over_sampling.html
https://imbalanced-learn.org/stable/under_sampling.html
```
• Reference manual:

```
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
```
 \bullet Example:^{[3](#page-1-1)}

https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html

 2 Do "New > Terminal" and then run conda install -c conda-forge imbalanced-learn to install package.

³Click on "launch binder" to run it online. Note class_weight= $\{1: 10\}$, which leaves class 0 at the default weight of 1). Also try class_weight={0: 1, 1: 1} (balanced) and class_weight={0: 12, 1: 10} (almost balanced).

Combining Models

While ensemble methods like random forests combine several similar weak models, we can also $\begin{tabular}{c} combine different \hspace{1em} \hspace{1em} \hspace{1em} \hspace{1em} models: \end{tabular}$

- the predictions (regression) or scores (classification) of several models.
- Majority vote applies several models and returns the predicted class. (Resolve a tie by choosing randomly or returning an error (or use an odd number of models).)
- builds a meta-model whose input is the output of several base models. e.g. To combine models f_1 and f_2 that predict from the same set of classes, create a training example (\mathbf{x}'_i, y'_i) for the stacked model as $(\mathbf{x}'_i = [f_1(\mathbf{x}_i), f_2(\mathbf{x}_i)], y'_i = y_i)^4$ $(\mathbf{x}'_i = [f_1(\mathbf{x}_i), f_2(\mathbf{x}_i)], y'_i = y_i)^4$ and train a meta-model on the new examples. Tune hyperparameters with cross-validation. Comparatave notes:
	- Stacking uses from the base models (scores across C class labels) than averaging or majority voting (single best class label from among C labels).
	- $-$ Stacking uses $______\$ models on the same data, while bagging uses the $______\$ model on different (bootstrap resampled) data.
	- Stacking uses to combine predictions from base models, while boosting uses a sequence of models in which the next model tries to correct the current one.

Base models should be by being made from different features or different algorithms.

Python

 from sklearn.ensemble import StackingClassifier, StackingRegressor clf = StackingClassifier(estimators, final_estimator=None) model = StackingRegressor(estimators, final_estimator=None) estimators is a list of tuples (string name, estimator) giving the models to be stacked. final_estimator uses the output of estimators as input.

To learn more:

- User guide: <https://scikit-learn.org/stable/modules/ensemble.html#stacking>
- Reference manual:

<https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html> <https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html>

Example:

https://scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html

 $^4f_1(\mathbf{x}_i)$ is the output of <code>clf1.predict_proba(x)</code> or <code>clf1.decision_function(x)</code> or <code>model1.predict(x).</code>

Algorithm Efficiency

of algorithms reveals the computational complexity of algorithms in terms of the time (or memory or other resources) they require. We use <u>notation</u> to write time as a function of input size N , and then constants and lower-order terms.

- Suppose a program running on input of size n has run time $f(n)$ seconds.
- \bullet Big-O gives an upper bound on run-time to within a constant factor. A function $f(n)$ is said to be $O(g(n))$ if there exist constants C and N such that $f(n) < C \cdot g(n)$ for all . (Draw picture.)
- Read " $f(n) = O(g(n))$ " as " $f(n)$ is big-O of g(n)."
- Here are some typical $q(n)$ functions in increasing order:
	- $-g(n) = 1, e.g.$ by index i $-g(n) = \log_2(n), e.g.$ in sorted array $-g(n) = n, e.g.$ $-g(n) = n \log_2(n)$, e.g. clever comparison $-g(n) = n^2$, e.g. $-g(n) = n^3$, e.g. matrix _________________, $C = AB$ via $c_{ij} = \sum_{k=1}^n a_{ik} \cdot b_{kj}$ $-g(n) = n!$, e.g. traveling salesman via
- Just reading a data set of size n is $O(\underline{\hspace{2cm}})$, so an $O(n)$ algorithm (that runs only once) counts as _________. Since $log_2(n)$ is small for typical n, an $O(n \log_2(n))$ algorithm is often fast enough. Programs taking $O(n^2)$ or more time may work for small n but can be for large n.
- The of the algorithm usually matters a lot more than processor speed, coding skill, programming language, etc.
- If we cannot figure out the $O($) formula, we can __________ the code for several dataset sizes N and make a graph of time vs. N. e.g.

start = time.time() # get time in seconds since "time started" (often 1/1/1970) # ... code that requires timing goes here ... $end = time.time()$ $seconds = end - start$ print(f'The code took {seconds} seconds.')

 \bullet When the time is too long on N examples, work with a $_____\$ randomly-selected subset.

To learn more:

- https://scikit-learn.org/stable/computing/computational_performance.html
- <https://scikit-learn.org/stable/developers/performance.html>
- <https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms>

Multicore computing to speed up computation

In *multicore* computing, an algorithm is run \qquad on multiple CPU cores.^{[5](#page-4-0)}

Python

Some estimators support multicore computing via an **parameter:** set n_jobs=None to use one core, n_jobs=n to use n, or n_jobs=-1 to use all. Find #CPUs via

import os # operating system interfaces (https://docs.python.org/3/library/os.html) $n_CPU = os.cpu_count()$

Multicore methods include:

- §3: KNeighborsClassifier(), KNeighborsRegressor()
- §5: cross_val_score(), GridSearchCV(), RandomizedSearchCV()
- §5: permutation_importance()
- §7: BaggingRegressor(), BaggingClassifier(), RandomForestRegressor(), RandomForestClassifier()
- §8: StackingClassifier(), StackingRegressor()

To learn more:

User guide: <https://scikit-learn.org/stable/computing/parallelism.html>