
8 Advanced Practice

Handling Imbalanced Datasets

An dataset has one class under-represented.

e.g. Fraudulent e-commerce transactions are much less common than genuine ones. Noise puts
genuine ones on the wrong side of the desired decision boundary, moving it to a place.

Possible solutions:

� For SVM, we can assign to the minority class.

e.g. For binary SVM, instead of finding soft-margin’s

argminw,b

[
1
2 ||w||2 + C 1

N

∑N
i=1max(0, 1− yi(wxi + b))

]
, we find something like

argminw,b

1

2
||w||2 + C

1

N

C1

∑
{(xi,yi)|yi=−1}

max(0, 1− yi(wxi + b)) +

C2

∑
{(xi,yi)|yi=+1}

max(0, 1− yi(wxi + b))


where C1 and C2 are regularization parameters that can be set as .

e.g. See Burkov’s Figure 8.1 on p. 98 (p. 3 of www.dropbox.com/s/im1s2skkaikzrrs/Chapter8.pdf?dl=0).

The same problem (before re-weighting imbalanced data) arises with most algorithms.

� adds multiple copies of minority class examples.

� randomly removes some majority class examples.

� Create examples by combining randomly sampled feature values from several
examples of minority class.

Do train_test_split() addressing imbalance so that test data are .

Python

� The svm.SVC() we know1 has a class_weight parameter:

– The default None gives weights C1 = C2 = 1 to each class.

– It can be a dictionary of label:value pairs (where value > 0) like {0: C_1, 1: C_2}.

– Using 'balanced' gives weights inversely proportional to class counts in training data
as N / (n_classes * np.bincount(y)); e.g.

1svm.SVC(kernel=’linear’, C=1) for soft-margin linear SVM (or C=1000 for hard-margin),
svm.SVC(kernel=’rbf’, C=1, gamma=’scale’) for kernel trick for nonlinear boundary

www.dropbox.com/s/im1s2skkaikzrrs/Chapter8.pdf?dl=0

y = np.array([0, 0, 0, 0, 0, 1]) # 5 zeros, 1 one

N = y.shape # 6

counts = np.bincount(y) # array([5, 1])

n_classes = counts.shape # 2

C_1, C_2 = N / (n_classes * counts) # 0.6, 3

� For over- and undersampling,2

– from imblearn.over_sampling import RandomOverSampler

rs = RandomOverSampler(random_state=None)

X_resampled, y_resampled = rs.fit_resample(X, y)

– from imblearn.under_sampling import RandomUnderSampler

rs = RandomUnderSampler(random_state=None)

X_resampled, y_resampled = rs.fit_resample(X, y)

e.g.

X = np.array([1, 2, 3, 4, 5, 6]).reshape(-1, 1)

y = np.array([0, 0, 0, 0, 1, 1])

rs = RandomOverSampler()

X_resampled, y_resampled = rs.fit_resample(X, y)

print(f'Oversampling: X_resampled={X_resampled},\ny_resampled={y_resampled}')

rs = RandomUnderSampler()

X_resampled, y_resampled = rs.fit_resample(X, y)

print(f'Undersampling: X_resampled={X_resampled},\ny_resampled={y_resampled}')

To learn more:

� User guide:

https://scikit-learn.org/stable/modules/svm.html#unbalanced-problems

https://imbalanced-learn.org/stable/over_sampling.html

https://imbalanced-learn.org/stable/under_sampling.html

� Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html

https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html

� Example:3

https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html

2Do “New > Terminal” and then run conda install -c conda-forge imbalanced-learn to install package.
3Click on “launch binder” to run it online. Note class weight={1: 10}, which leaves class 0 at the default weight

of 1). Also try class weight={0: 1, 1: 1} (balanced) and class weight={0: 12, 1: 10} (almost balanced).

https://scikit-learn.org/stable/modules/svm.html#unbalanced-problems
https://imbalanced-learn.org/stable/over_sampling.html
https://imbalanced-learn.org/stable/under_sampling.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html
https://imbalanced-learn.org/stable/references/generated/imblearn.under_sampling.RandomUnderSampler.html
https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane_unbalanced.html

Combining Models

While ensemble methods like random forests combine several similar weak models, we can also
combine different models:

� the predictions (regression) or scores (classification) of several models.

� Majority vote applies several models and returns the predicted class.
(Resolve a tie by choosing randomly or returning an error (or use an odd number of models).)

� builds a meta-model whose input is the output of several base models. e.g. To
combine models f1 and f2 that predict from the same set of classes, create a training example
(x′

i, y
′
i) for the stacked model as (x′

i = [f1(xi), f2(xi)], y
′
i = yi)

4 and train a meta-model on
the new examples. Tune hyperparameters with cross-validation. Comparatave notes:

– Stacking uses from the base models (scores across C class
labels) than averaging or majority voting (single best class label from among C labels).

– Stacking uses models on the same data, while bagging uses the
model on different (bootstrap resampled) data.

– Stacking uses to combine predictions from base models, while boost-
ing uses a sequence of models in which the next model tries to correct the current one.

Base models should be by being made from different features or different algorithms.

Python

� from sklearn.ensemble import StackingClassifier, StackingRegressor

clf = StackingClassifier(estimators, final_estimator=None)

model = StackingRegressor(estimators, final_estimator=None)

estimators is a list of tuples (string name, estimator) giving the models to be stacked.

final_estimator uses the output of estimators as input.

To learn more:

� User guide: https://scikit-learn.org/stable/modules/ensemble.html#stacking

� Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html

� Example:

https://scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html

4f1(xi) is the output of clf1.predict proba(x) or clf1.decision function(x) or model1.predict(x).

https://scikit-learn.org/stable/modules/ensemble.html#stacking
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_stack_predictors.html

Algorithm Efficiency

of algorithms reveals the computational complexity of algorithms in terms of the
time (or memory or other resources) they require. We use notation to write time
as a function of input size N , and then constants and lower-order terms.

� Suppose a program running on input of size n has run time f(n) seconds.

� Big-O gives an upper bound on run-time to within a constant factor. A function f(n) is said to
be O(g(n)) if there exist constants C and N such that f(n) < C · g(n) for all .
(Draw picture.)

� Read “f(n) = O(g(n))” as “f(n) is big-O of g(n).”

� Here are some typical g(n) functions in increasing order:

– g(n) = 1, e.g. by index i

– g(n) = log2(n), e.g. in sorted array

– g(n) = n, e.g.

– g(n) = n log2(n), e.g. clever comparison

– g(n) = n2, e.g.

– g(n) = n3, e.g. matrix , C = AB via cij =
∑n

k=1 aik · bkj
– g(n) = n!, e.g. traveling salesman via

� Just reading a data set of size n is O(), so an O(n) algorithm (that runs only once)
counts as . Since log2(n) is small for typical n, an O(n log2(n)) algorithm is of-
ten fast enough. Programs taking O(n2) or more time may work for small n but can be

for large n.

� The of the algorithm usually matters a lot more than processor speed, coding
skill, programming language, etc.

� If we cannot figure out the O() formula, we can the code for several dataset sizes
N and make a graph of time vs. N . e.g.

start = time.time() # get time in seconds since "time started" (often 1/1/1970)

... code that requires timing goes here ...

end = time.time()

seconds = end - start

print(f'The code took {seconds} seconds.')

� When the time is too long on N examples, work with a randomly-selected subset.

To learn more:

� https://scikit-learn.org/stable/computing/computational_performance.html

� https://scikit-learn.org/stable/developers/performance.html

� https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms

https://scikit-learn.org/stable/computing/computational_performance.html
https://scikit-learn.org/stable/developers/performance.html
https://www.thekerneltrip.com/machine/learning/computational-complexity-learning-algorithms

Multicore computing to speed up computation

In multicore computing, an algorithm is run on multiple CPU cores.5

Python

Some estimators support multicore computing via an parameter: set n_jobs=None
to use one core, n_jobs=n to use n, or n_jobs=-1 to use all. Find #CPUs via

import os # operating system interfaces (https://docs.python.org/3/library/os.html)

n_CPU = os.cpu_count()

Multicore methods include:

� §3: KNeighborsClassifier(), KNeighborsRegressor()

� §5: cross_val_score(), GridSearchCV(), RandomizedSearchCV()

� §5: permutation_importance()

� §7: BaggingRegressor(), BaggingClassifier(),

RandomForestRegressor(), RandomForestClassifier()

� §8: StackingClassifier(), StackingRegressor()

To learn more:

� User guide: https://scikit-learn.org/stable/computing/parallelism.html

5Amdahl’s law (https://en.wikipedia.org/wiki/Amdahl%27s_law) says “Don’t expect .”

https://scikit-learn.org/stable/computing/parallelism.html
https://en.wikipedia.org/wiki/Amdahl%27s_law

