8 Advanced Practice

Handling Imbalanced Datasets

An __________ dataset has one class under-represented.

e.g. Examples of fraudulent e-commerce transactions are much less common than examples of genuine ones. Noise puts examples of genuine ones on the wrong side of the desired decision boundary, moving the boundary from the desired location to avoid their mis-classification.

Possible solutions:

- For SVM, we can assign ______________ to the minority class.
 e.g. For binary SVM, instead of finding soft-margin’s
 \[
 \arg\min_{w,b} \left[\frac{1}{2}||w||^2 + C \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i (wx_i + b)) \right]
 \]
 we find something like
 \[
 \arg\min_{w,b} \left[\frac{1}{2}||w||^2 + C \frac{1}{N} \left(C_1 \sum_{i=1}^{N_1} \max(0, 1 - y_i (wx_i + b)) + C_2 \sum_{i=1}^{N_2} \max(0, 1 - y_i (wx_i + b)) \right) \right]
 \]
 where \(N_1\) and \(N_2\) are the counts of each class (so \(N_1 + N_2 = N\)) and \(C_1\) and \(C_2\) are two regularization parameters that can be set as weights.
 e.g. See Burkov’s Figure 8.1 on p. 98 (p. 3 of [www.dropbox.com/s/im1s2akkaikzrrs/Chapter8.pdf?dl=0](#)).

 The same problem (before re-weighting imbalanced data) arises with most algorithms.

- ______________ adds multiple copies of minority class examples.

- ______________ randomly removes some majority class examples.

- Create __________ examples by combining randomly sampled feature values from several examples of minority class.

Python

- The `svm.SVC()` we know
 \footnote{`svm.SVC(kernel='linear', C=1)` for soft-margin linear SVM (or C=1000 for hard-margin),
 `svm.SVC(kernel='rbf', C=1, gamma='scale')` for kernel trick for nonlinear boundary}
 has a `class_weight` parameter:
 - The default `None` gives weights \(C_1 = C_2 = 1\) to each class.
 - It can be a dictionary of `label:value` pairs (where `value > 0`) like `{0: C_1, 1: C_2}`.
 - Using `balanced` gives weights inversely proportional to class counts in training data as \(N / (n_{classes} * \text{np.bincount}(y))\); e.g.
y = np.array([0, 0, 0, 0, 0, 1]) # 5 zeros, 1 one
N = y.shape # 6
counts = np.bincount(y) # array([5, 1])
n_classes = counts.shape # 2
C_1, C_2 = N / (n_classes * counts) # 0.6, 3

• For over- and undersampling:

 - from imblearn.over_sampling import RandomOverSampler
 rs = RandomOverSampler(random_state=None)
 X_resampled, y_resampled = rs.fit_resample(X, y)
 - from imblearn.under_sampling import RandomUnderSampler
 rs = RandomUnderSampler(random_state=None)
 X_resampled, y_resampled = rs.fit_resample(X, y)

e.g.
X = np.array([1, 2, 3, 4, 5, 6]).reshape(-1, 1)
y = np.array([0, 0, 0, 0, 1, 1])
rs = RandomOverSampler()
X_resampled, y_resampled = rs.fit_resample(X, y)
print(f'Oversampling: X_resampled={X_resampled},
y_resampled={y_resampled}')

rs = RandomUnderSampler()
X_resampled, y_resampled = rs.fit_resample(X, y)
print(f'Undersampling: X_resampled={X_resampled},
y_resampled={y_resampled}')

To learn more:

• User guide:

• Reference manual:

• Example:

2If you need to install imblearn, try import sys and !{sys.executable} -m pip install imblearn in a cell.
3Click on “launch binder” to run it online. Note class_weight={1: 10}, which leaves class 0 at the default weight of 1). Also try class_weight={0: 1, 1: 1} (balanced) and class_weight={0: 12, 1: 10} (almost balanced).
Combining Models

While ensemble methods like random forests combine several similar weak models, we can also combine different ____________ models:

- ____________ the predictions (regression) or scores (classification) of several models.
- ____________ vote applies several models and returns the ____________ predicted class. (Resolve a tie by choosing randomly or returning an error (or use an odd number of models)).
- ____________ builds a meta-model whose input is the output of several base models. e.g. To combine models \(f_1 \) and \(f_2 \) that predict from the same set of classes, create a training example \((x'_i, y'_i)\) for the stacked model as \((x'_i = [f_1(x_i), f_2(x_i)], y'_i = y_i)\) and train a meta-model on the new examples. Tune hyperparameters with cross-validation. Comparative notes:
 - Stacking uses ____________ from the base models (scores across \(C \) class labels) than averaging or majority voting (single best class label from among \(C \) labels).
 - Stacking uses ____________ models on the same data, while bagging uses the ____________ model on different (bootstrap resampled) data.
 - Stacking uses ____________ to combine predictions from base models, while boosting uses a sequence of models in which the next model tries to correct the current one.

Base models should be ____________ by being made from different features or different algorithms.

Test the combined model on the ____________ set.

Python

- `from sklearn.ensemble import StackingClassifier, StackingRegressor`

 clf = StackingClassifier(estimators, final_estimator=None)

 model = StackingRegressor(estimators, final_estimator=None)

 `estimators` is a list of tuples (`string name, estimator`) giving the models to be stacked.

 `final_estimator` uses the output of `estimators` as input.

To learn more:

- Reference manual:

- Example:

\(^4\) \(f_1(x_i) \) is the output of `clf1.predict_proba(x)` or `clf1.decision_function(x)` or `model1.predict(x)`.
Algorithm Efficiency

__________ of algorithms reveals the computational complexity of algorithms in terms of the
time (or memory or other resources) they require. We use __________ notation to write time
as a function of input size \(N \), and then __________ constants and lower-order terms.

- Suppose a program running on input of size \(n \) has run time \(f(n) \) seconds.
- Big-O gives an upper bound on run-time to within a constant factor. A function \(f(n) \) is said to
 be \(O(g(n)) \) if there exist constants \(C \) and \(N \) such that \(f(n) < C \cdot g(n) \) for all _________.
 (Draw picture.)
- Read “\(f(n) = O(g(n)) \)” as “\(f(n) \) is big-O of \(g(n) \).”
- Here are some typical \(g(n) \) functions in increasing order:
 - \(g(n) = 1 \), e.g. ________________ by index \(i \)
 - \(g(n) = \log_2(n) \), e.g. ________________ in sorted array
 - \(g(n) = n \), e.g. ________________
 - \(g(n) = n \log_2(n) \), e.g. clever comparison ________________
 - \(g(n) = n^2 \), e.g. ________________
 - \(g(n) = n^3 \), e.g. (straightforward) matrix ________________ (in \(C = AB, c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj} \))
 - \(g(n) = n! \), e.g. traveling salesman via ________________
- Just reading a data set of size \(n \) is \(O(______) \), so an \(O(n) \) algorithm (that runs only once)
counts as ________. Since \(\log_2(n) \) is small for typical \(n \), an \(O(n \log_2(n)) \) algorithm is of-
ten fast enough. Programs taking \(O(n^2) \) or more time may work for small \(n \) but can be
______________ for large \(n \).
- The ________ of the algorithm usually matters a lot more than processor speed, coding
 skill, programming language, etc.
- If we cannot figure out the \(O() \) formula, we can ________ the code for several dataset sizes
 \(N \) and make a graph of time vs. \(N \). e.g.
 \[
 \begin{align*}
 \text{start} &= \text{time.time()} \quad \# \text{get time in seconds since "time started" (often 1/1/1970)} \\
 \text{# code that requires timing goes here ...} \\
 \text{end} &= \text{time.time()} \\
 \text{seconds} &= \text{end - start} \\
 \text{print(f'The code took {seconds} seconds.')}
 \end{align*}
 \]
- When the time is too long on \(N \) examples, work with a ________ randomly-selected subset.

To learn more:

Multicore computing to speed up computation

In *multicore* computing, an algorithm is run _______________ on multiple CPU cores.\(^5\)

Python

Some estimators support multicore computing via an __________ parameter: set `n_jobs=None` to use one core, `n_jobs=n` to use `n`, or `n_jobs=-1` to use all. Find #CPUs via

```python
import os # operating system interfaces (https://docs.python.org/3/library/os.html)
n_CPU = os.cpu_count()
```

Multicore methods include:

- §3: `KNeighborsClassifier()`, `KNeighborsRegressor()
- §5: `cross_val_score()`, `GridSearchCV()`, `RandomizedSearchCV()
- §5: `permutation_importance()
- §7: `BaggingRegressor()`, `BaggingClassifier()`,
 `RandomForestRegressor()`, `RandomForestClassifier()
- §8: `StackingClassifier()`, `StackingRegressor()

To learn more:

\(^5\) Amdahl’s law (https://en.wikipedia.org/wiki/Amdahl%27s_law) says “Don’t expect _______________.”