
9 Unsupervised Learning

Unsupervised learning works with data (no), making evaluation more difficult.

Density Estimation

Density estimation models the probability function of the (unknown) distribution
from which data were drawn.1

� Recall: We used a model for density estimation in §7 to help with one-class
classification: gm = mixture.GaussianMixture(n_components=1) estimates the parameters
µ and Σ of the multivariate normal distribution ND(µD,ΣD×D), which has density function

fµ,Σ(x) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)√

(2π)D|Σ|
.

For density estimation, use the same code to estimate fµ,Σ(x) given {xi}. (Just omit the
used to decide whether a new x is in the one class.)

� Recall: We used a nonparameteric model in regression, a supervised learning
method in §7. We used N Gaussians centered at {xi} to make weighted averages of y’s.

In kernel density estimation (KDE), use the of the same N Gaussians to estimate
the probability density function f(x) which generated the unsupervised (no y) examples {xi}.

Consider the 1D case. Our kernel model is

f̂b(x) =
1

Nb

N∑
i=1

k

(
x− xi

b

)
,

where b is a hyperparameter controling the underfit-overfit tradeoff and k(x) ≥ 0 is a kernel
with

∫∞
−∞ k(x)dx = 1.

As in §7, we use a Gaussian kernel, k(z) =
1√
2π

exp

(
−z2

2

)
.

We can rewrite the model as

f̂b(x) =

which is the of the N Gaussians {N(µ = , σ =)|i = 1, . . . , N}.2

1These methods improve upon just using a (density) .
2The notation of Burkov and Wikipedia conceals the essential point that the model is an of N

Gaussians centered at {xi}. Possibly they emphasize we are passing x−xi
b

to a parameterless kernel.

Python

� To estimate ND(µD,ΣD×D), use from sklearn import mixture and
gm = mixture.GaussianMixture(n_components=1) as in §7. Then gm.fit(X), gm.means_,
gm.covariances_, and np.exp(gm.score_samples(X)) work as before. To learn more:

– User guide: https://scikit-learn.org/stable/modules/mixture.html

– Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html

� For KDE:

– from sklearn.neighbors import KernelDensity

– kde = KernelDensity(bandwidth=1.0, kernel='gaussian')

* b=bandwidth is the bandwidth

* kernel is one of 'gaussian' (the default), 'tophat', 'epanechnikov', 'exponential',
'linear', 'cosine'; see Example link below for their shapes and effects

– kde.fit(X) fits the model to the data.

– kde.score_samples(X) gives log-likelihood of each x in X, so np.exp(kde.score_samples(X))
gives f̂b(x).

To learn more:

– User guide: https://scikit-learn.org/stable/modules/density.html

– Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html

– Example:

https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html3

3Click on “launch binder” to run it online. Change “N = 100” to “N = 10” to see kernels.

https://scikit-learn.org/stable/modules/mixture.html
https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html
https://scikit-learn.org/stable/modules/density.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html
https://scikit-learn.org/stable/auto_examples/neighbors/plot_kde_1d.html

Clustering

Clustering finds groups of unlabeled examples and assigns a cluster ID to each ex-
ample.4 It is used in, e.g., exploratory data analysis, market segmentation, social network analysis,
recommender systems, and stock sector analysis.

� k-means clustering maps each unlabeled example x to a cluster ID.

– Choose the number of clusters .

– Randomly choose one example to start each cluster as its c.

– Label each example x with the centroid to which it is .

– Recompute each centroid as the of the examples labeled with it.

– Repeat the last two steps until centroids .

k is a hyperparameter typically decided by an educated guess.

k-means seeks to minimize , the sum of squared distances of examples to their
respective centroids. Avoid poor results by running it times.

e.g. Run k-means with k = 3, starting with the three unfilled points as cluster centers.

u
e
u

u
u

u

e e

u
u
u

u
u

u

u u
e.g. Run k-means with k = 3, starting with the three unfilled points as cluster centers.

u
e
e

u
e

u

u u

u
u
u

u
u

u

u u

u
u
u

u
u

u

u u
4Clustering labeled examples is not classification, as it {yi}.

Python

– from sklearn.cluster import KMeans

– kmeans = KMeans(n_clusters=8, n_init=10, random_state=0):

* n_clusters is the number of clusters to be found

* n_init is the number of times k-means is run, each with different centroid seeds

* random_state=0 determines centroid initialization

– kmeans.fit(X) computes the clusters

– kmeans.labels_ gives the labels (cluster IDs) of each x in the training X

– kmeans.cluster_centers_ gives coordinates of the cluster centers

– kmeans.predict(X) gives the closest cluster for each x in X

To learn more:

– User guide: https://scikit-learn.org/stable/modules/clustering.html#k-means

– Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

– Examples:

2D: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_plusplus.html

3D: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html

� DBSCAN 5 is a -based clustering algorithm that puts x in a cluster if it is
to many points in that cluster.

Hyperparameters:

– ϵ is a distance threshold ().

– n is the number of examples in a cluster.

Definitions:

– x′ is a of x if its distance to x is ≤ ϵ.

– x is a example if its neighborhood size is at least n.

– An (or noisy example) has no neighbors.

Algorithm:

– For each unexamined core example:

* Make its neighborhood a .

* add core-example neighbors of this cluster’s examples.

* Add non-core example neighbors (recursively) of cluster examples.

– Call remaining examples .

5“DBSCAN” refers to “Density-based spatial clustering of applications with noise.”

https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_plusplus.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_iris.html

DBSCAN builds clusters with an shape. (k-means builds hyper-
clusters.) Choosing ϵ and n is not easy. Increasing n or decreasing ϵ requires higher density
to make a cluster. DBSCAN cannot effectively handle clusters of density.

e.g. Run DBSCAN with ϵ = 1 and n = 2:

u
u
u
u

u u u u u

u
u
u

u
u

u

Python

– from sklearn.cluster import DBSCAN

– db = DBSCAN(eps=0.5, min_samples=5, metric='euclidean')

eps is ϵ, min_samples is n, and metric options include those we used in k-NN

– db.fit(X) computes the clusters

– db.labels_ gives labels (cluster IDs) of each x in the training X; noisy examples get -1

– db.core_sample_indices_ gives indices of core samples

– For each k ̸= −1 in db.labels_, we can find neighbors in cluster k:
is_in_cluster_k = (db.labels_ == k)

is_core_sample = np.zeros(shape=db.labels_.shape)

is_core_sample[db.core_sample_indices_] = True

is_neighbor_of_cluster_k = (is_in_cluster_k & ~is_core_sample)

To learn more:

– User guide: https://scikit-learn.org/stable/modules/clustering.html#dbscan

– Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

– Example:

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html

� HDBSCAN improves upon DBSCAN and can handle clusters of density. (It
drops ϵ. Details are omitted.) Try it .

To learn more:

– User guide: https://scikit-learn.org/stable/modules/clustering.html#hdbscan

– Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html

There is a comparison of many clustering methods at
https://scikit-learn.org/stable/modules/clustering.html.

https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
https://scikit-learn.org/stable/modules/clustering.html#hdbscan
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.HDBSCAN.html
https://scikit-learn.org/stable/modules/clustering.html

Dimensionality Reduction

Dimensionality reduction maps x into a vector with features to reduce correlation among
features, reduce noise, visualize data (we see only 2D or 3D), and facilitate interpretable models.

� Principal component analysis (PCA) fits a new coordinate system to {xi} where each new
is called a principal component (PC):

– Each PC is a vector (length 1).

– The first PC is the direction of the of the data {xi}. (It
is the axis of a “minimal” ellipsoid enclosing the data.)

– For i > 1, the ith PC is orthogonal6 to the first i − 1 PCs and in the direction of the
greatest variance in the data.

A helpful picture is Figure 7 on p. 15 of

https://www.dropbox.com/s/y9a7b0hzmuksqar/Chapter9.pdf?dl=0.

To do dimensionality reduction, we choose some number p of dimensions (0 < p < D) and
each xi onto the first p PCs, transforming the D-dimensional xi into a smaller

p-dimensional example. Burkov omits details.

Benefits of PCA:

– PCA does while retaining most of the information, saving
memory, disk space, and computation time.

– PCA can mitigate the of dimensionality : as D increases, the “ ”
of the feature space increases faster than the available data, which become .
Many elementary models/algorithms/insights are not designed for sparse data.

e.g. The number of D-digit binary numbers in {0, 1}D is . The number of
D-digit decimal numbers in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}D is .

e.g. We need N = 10D points to sample each unit interval/square/cube/hypercube from
[0, 10]D. Draw [0, 10]D and unit hypercubes for each D ∈ {1, 2, 3}.

– PCA does feature . (It creates several important new features as linear
combinations of original features. This is not feature .)

– The first PCs often account for most of the data variability, so
even high-dimensional data can be visualized in 2D or 3D.

6Two vectors a and b are orthogonal if a · b = 0. In 2D, orthogonal means .

https://www.dropbox.com/s/y9a7b0hzmuksqar/Chapter9.pdf?dl=0

Python

from sklearn.decomposition import PCA

– pca = PCA(n_components=None, random_state=0) keeps n_components PCs; using
None keeps all D components

– pca.fit(X) learns n_components PCs from {xi} in X

– pca.components_ gives PCs (axes/directions of maximum variance in the data)

– pca.explained_variance_ratio_ gives % of variance explained by each PC

– pca.transform(X) applies dimensionality reduction to each x in X

To learn more:

– User guide: https://scikit-learn.org/stable/modules/decomposition.html

– Reference manual:

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Perspective

“Burkov has undertaken a very useful but impossibly hard task in reducing all of machine learning
to 100 pages. He succeeds well in choosing the topics–both theory and practice–that will be useful
to practitioners, and for the reader who understands that this is the 100 (or actually
150) pages you will read, not the , provides a solid introduction to the field.”

—Peter Norvig, Research Director at Google and author of Artificial Intelligence: A Modern Approach

https://scikit-learn.org/stable/modules/decomposition.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

