1	Mark o	ach e	tatement	True	or I	معادة
	. mark e	ach s	tatement	тине (() ('	¹aise

- (a) In linear regression, a reasonable alternative to the cost function mean squared error = $\frac{1}{N} \sum_{i=1}^{N} \left[f_{\mathbf{w},b}(\mathbf{x}_i) y_i \right]^2 \text{ is mean error} = \frac{1}{N} \sum_{i=1}^{N} \left[f_{\mathbf{w},b}(\mathbf{x}_i) y_i \right].$
 - O True
 - False ●
- (b) A linear SVM with decision boundary $(2,1,2) \cdot \mathbf{x} + 2 = 0$ has a smaller margin between +1 and -1 support vectors than one with boundary $(6,0,8) \cdot \mathbf{x} 3 = 0$.
 - O True
 - False ANSWER:
 The margin for the first SVM is $\frac{2}{||\mathbf{w}||} = \frac{2}{\sqrt{2^2+1^2+2^2}} = \frac{2}{3}$, while the margin for the second is $\frac{2}{||\mathbf{w}||} = \frac{2}{\sqrt{6^2+0^2+8^2}} = \frac{2}{10}$.
- (c) The values for \mathbf{w} and b that minimize negative log-likelihood in the logistic regression model also minimize the mean squared error $\frac{1}{N} \sum_{i=1}^{N} \left[P_{\mathbf{w},b}(y_i = 1)(\mathbf{x}_i) y_i \right]^2$.
 - O True
 - False ANSWER: lacktriangle A predicted probability $\hat{P}_{\mathbf{w},b}(y_i = 1)(\mathbf{x}_i) \in \{0,1\}$, while a label $y_i \in [0,1]$. The logistic curve does not fit the data points.
- (d) The entropy of a decision tree node containing the set of examples
 - $\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 2 & 6 & 0 \\ 5 & 7 & 0 \\ 3 & 8 & 1 \\ \text{is } \approx 0.92. \end{array}$
 - O True ANSWER:

The node's y values are 0, 0, 1, so $f_{ID3}(S) = P(y) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S} y = \frac{1}{3} (0+0+1) = \frac{1}{3}$.

$$\begin{split} H(S) &= \sum_{y \in \{0,1\}} P(y) \left[-\log_2 P(y) \right] \\ &= -\left(1 - \frac{1}{3}\right) \log_2 \left(1 - \frac{1}{3}\right) - \frac{1}{3} \log_2 \frac{1}{3} \\ &\approx 0.92 \end{split}$$

- O False
- (e) While gradient descent's computation speed depends on the number of features D, stochastic gradient descent's computation speed does not depend on D.

	\bigcirc	True
	\bigcirc	False ANSWER:
		Even if SGD uses only one example for each iteration, it can still take longer to process a high- D example than a low- D example.
(f)		a logistic regression model on data with one feature, the midpoint of the logistic ve is always between the feature minimum and the feature maximum.
	\bigcirc	True
	\bigcirc	False ANSWER:
		Consider, e.g., a data set whose "sample proportions" are all small.

- 2. Consider the logistic regression model, $P(y_i = 1) = \frac{1}{1 + e^{-(\mathbf{w}\mathbf{x} + b)}}$.
 - (a) For each function below that plays a role in the model, indicate its image from among these choices:
 - A. $\mathbb{Z} = \text{integers}$
 - B. \mathbb{Z}_+ = positive integers
 - C. \mathbb{R} = real numbers
 - D. \mathbb{R}_+ = positive real numbers
 - E. (0,1) = interval from 0 to 1

Hint: The *image* of a function is the set of all output values it may produce.

- i. $f_1(\mathbf{x}) = \mathbf{w}\mathbf{x} + b$ for $\mathbf{x} \in \mathbb{R}^D$:
 - ΑО,
- $B \bigcirc$, $C \bigcirc ANSWER: \bullet$, $D \bigcirc$,
- $E\bigcirc$

- ii. $f_2(t) = \frac{1}{1+e^{-t}}$ for $t \in \mathbb{R}$:

 - а O, в O,

- $C \bigcirc$, $D \bigcirc$, $E \bigcirc$ ANSWER: lacktrian
- iii. $f_3(t) = e^{-t}$ for $t \in \mathbb{R}$:

 - ΑО, ВО,

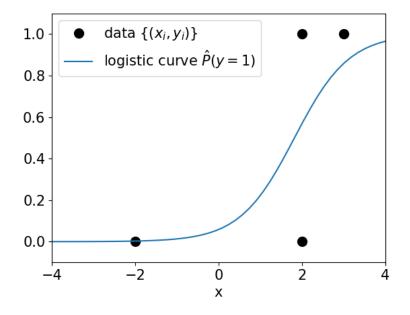
- $E\bigcirc$

(b) For the model with $\mathbf{w}=(-3,3)$ and b=3, find $\hat{P}\left(y=1|\mathbf{x}=(2,1)\right).$

ANSWER:

$$\hat{P}(y=1|\mathbf{x}) = \frac{1}{1+e^{-(\mathbf{w}\mathbf{x}+b)}} = \frac{1}{1+e^{-[(-3,3)\cdot(2,1)+3]}} = \frac{1}{1+e^0} = \frac{1}{2}.$$

(c) I ran some Python/scikit-learn code to make the model pictured here:



- i. For each array below, indicate the line of code that could have produced it from among these choices:
 - A. model.fit(X, y)
 - B. model.intercept_
 - C. model.coef_[0]
 - D. model.predict(X)
 - E. model.predict_proba(X)[:, 1]
 - F. model.score(X, y)
 - 1. array([0, 1, 1, 1]):
 - а O,
- в О,
- $C \bigcirc$,
- $D \bigcirc \bullet$,
- ЕΟ,
- $F \bigcirc$

- 2. array([0.003, 0.569, 0.569, 0.859])
 - ΑО,
- в О,
- СО,
- рΟ,
- Е ,
- $_{\rm F}$ \bigcirc

- 3. array([1.528])
 - ΑО,
- в О,
- $C \bigcirc \bullet$,
- DО,
- ЕΟ,
- $F \bigcirc$

- 4. array([-2.778])
 - О,
- $B \bigcirc \bullet$,
- С О,
- υО,
- ЕΟ,
- $F\bigcirc$
- ii. How do we classify a new point at x = 0.5 if using a decision threshold of 0.5?

 $\bigcirc \ \hat{y} = 0 \ \blacksquare$

 $\bigcirc \hat{y} \approx 0.05$

 $\bigcirc \hat{y} \approx 0.95$

 $\bigcirc \ \hat{y} = 1$

ANSWER:

 $\hat{y}=0$. The graph shows $\hat{P}_{\mathbf{w},b}(y=1|x=0.5)$ is between 0 and 0.2 (Python says ≈ 0.12), less than the 0.5 threshold. So we assign $\hat{y}=0$.

- 3. Here are some questions about decision trees.
 - (a) Consider a classification decision tree node containing the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = (x_1, x_2, x_3)$:

i. The entropy of this node in bits is

ANSWER:

The node's y values are 1, 1, 0, 1, 0, 1, so $f_{ID3}(S) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S} y = \frac{1}{6} (1 + 1 + 0 + 1 + 0 + 1) = \frac{2}{3}$. $H(S) = \frac{2}{3} (-\log_2(\frac{2}{3})) + \frac{1}{3} (-\log_2(\frac{1}{3})) \approx -\frac{2}{3} (-0.585) + \frac{1}{3} (-1.585) \approx 0.918$

ii. The (feature, threshold) pair (j,t) that yields the best split for this node is feature

j = and threshold t = .

6

ANSWER:

Using feature j=1 and threshold t=1.5 (or any $t\in[1,2)$) splits S into $S_-=\{(\mathbf{x},y)\in S|x^{(j)}\leq t\}=\{0,0\}$ and its complement $S_+=\{(\mathbf{x},y)\in S|x^{(j)}>t\}=\{1,1,1,1\}$, each of which has entropy 0.

(b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once into two leaves) made from the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = x_1$:

S			
y			
10			
11			
21			
22			
23			
24			

What value does this tree predict for $x_1 = 4.5$? $\hat{y} =$ ANSWER:

The best split uses feature j=1 and threshold t=1.5, yielding a left subtree containing the first two examples and a right subtree containing the last four. Making a predition with $x_1=4.5$ would use the right subtree. Its average y is 22.5, so the tree would predict $\hat{y}=22.5$.

4. Consider this training data set:

$\overline{x_1}$	x_2	x_3	y
0	3	0	Red
2	0	0	Red
0	1	3	Red
0	1	2	Green
-1	0	1	Green
1	1	1	Red

We use this data set to make a prediction for y when $x_1 = x_2 = x_3 = 0$ using k-NN.

- (a) Compute the Euclidean distance between each example and the test example, $(x_1, x_2, x_3) = (0, 0, 0)$.
- (b) What is our prediction with k = 1?
- (c) What is our prediction with k = 3?

ANSWER:

- (a) The distances are (from top to bottom): $3, 2, \sqrt{10}, \sqrt{5}, \sqrt{2}, \sqrt{3}$.
- (b) The shortest distance is $\sqrt{2}$ and the corresponding y is Green, so we predict y = Green.
- (c) The shortest three distances are $\sqrt{2}$, $\sqrt{3}$, 2 and the corresponding y are Green, Red, and Red, so we predict y=Red.

- 5. When the number D of features is large, performance of k-NN (and other local approaches that predict using only examples near the test example) tends to deteriorate. This is known as the *curse of dimensionality*.
 - (a) Suppose D = 1. Suppose x is uniformly distributed on [0, 1], the unit interval. We predict a test example's y response using only the examples in the 10% of the x range nearest to that test example. For instance, to predict for x = 0.6, we use examples in the range [0.55, 0.65]. On average, what proportion of the examples will we use to make the prediction?

(Hint: There is a simple answer. This is not a trick question.) ANSWER:

```
proportion = 10\% = 0.1.
```

(b) Now suppose D=2 and our feature are x_1 and x_2 , with (x_1,x_2) uniformly distributed on $[0,1]\times[0,1]$ (the unit square). For a given test example, we predict using examples in the closest 10% of the x_1 range and in the closest 10% of the x_2 range. For instance, in order to predict the response for a test example with $x_1=0.6$ and $x_2=0.35$, we use examples in the range [0.55,0.65] for x_1 and in the range [0.3,0.4] for x_2 . On average, what proportion of the available examples will we use to make the prediction?

```
ANSWER: proportion = 0.1 \times 0.1 = 0.1^2 = 0.01.
```

(c) Now suppose D=100. Again, each feature is uniformly distributed on [0,1], so each example is from $[0,1]^{100}$ (the 100-dimensional "unit hypercube"). We predict a test example's response y using examples within the closest 10% of each feature's range. What proportion of the available examples will we use to make the prediction?

```
ANSWER: proportion=0.1^{100} = 10^{-100}.
```

(d) Now suppose that we wish to make a prediction for a test example by creating a *D*-dimensional hypercube centered around the test example that contains, on average, 10% of the training examples. What is the length *l* of each side of the hypercube for each value of *D*?

Hint: Solve the equation $l^D = 0.1$.

```
i. For D = 1, l = _____
ii. For D = 2, l =
```

ii. For
$$D = 2$$
, $t =$

iii. For
$$D = 100, l = _____$$

Comment on what happens to the length l of each side as $D \to \infty$?

ANSWER:

For

i. D = 1 we have l = 0.1;

ii. D = 2 we have l = 0.316;

iii. D = 3 we have l = 0.977.

As $D \to \infty$, the solution for above equation tends toward 1, which means for every feature, we should use almost all its range only to make 10% of examples can be used for prediction.

- 6. Suppose we have a soft-margin SVM for which $\mathbf{w}=(6,-3,2)$ and b=1. Consider the example $(\mathbf{x}=(-1,2,1),y=-1)$.
 - (a) How does the SVM classify \mathbf{x} ?

ANSWER:

$$\mathbf{w}\mathbf{x} + b = -9 < 0 \implies \hat{y} = -1$$

(b) Does (\mathbf{x}, y) satisfy the SVM constraint? (Answer Yes or No.) ANSWER:

$$\mathbf{w}\mathbf{x} + b = -9 \le -1 \implies \text{yes.}$$

(c) What is the hinge loss associated with (\mathbf{x}, y) ?

ANSWER:

$$\max(0, 1 - y_i(\mathbf{w}\mathbf{x}_i + b)) = \max(0, 1 - (-1)(-9)) = \max(0, -8) = 0$$

7. In each situation, indicate the frequency (never, sometimes, or always) with which we will obtain 100% accuracy on training data that contain no pairs of examples with identical feature vectors. Suppose any hyperparameters are set to optimum values for training performance.					
(a	Decision tree with $N = 1$ example	always $\bigcirc \bullet$,	sometimes \bigcirc ,	$_{\mathrm{never}}\bigcirc$	
(b	Decision tree with $N = 5$ examples	always \bigcirc ,	sometimes $\bigcirc \bullet$,	$_{\mathrm{never}}\bigcirc$	
(c	Hard-margin linear SVM on linearly-separable data	always $\bigcirc \bullet$,	sometimes \bigcirc ,	never O	
(d	Hard-margin linear SVM on non-linearly-separable data	always \bigcirc ,	sometimes \bigcirc ,	never O	
(e	Soft-margin linear SVM on non-linearly-separable data	always \bigcirc ,	sometimes \bigcirc ,	never O	
(f) SVM with RBF kernel on non-linearly-separable data	always $\bigcirc \bullet$,	sometimes \bigcirc ,	$_{\mathrm{never}}\bigcirc$	
(g	k-NN with $k = 1$	always $\bigcirc \bullet$,	sometimes \bigcirc ,	$_{\mathrm{never}}\bigcirc$	
(h	h) k-NN with k=3	always \bigcirc ,	sometimes $\bigcirc \bullet$,	$_{\mathrm{never}}\bigcirc$	
(i)) Logistic regresion	always \bigcirc ,	sometimes $\bigcirc \bullet$,	$_{\mathrm{never}}\bigcirc$	
8. Suppose we have the regression model $y=3x+4$. (a) If y is converted to $1000y$ (e.g., y units are changed from kilograms (kg) to grams					
/1 -	ii. the intercept will be	·			
α)) If x is converted to $2x$,				
	i. the slope will be	$_{\scriptscriptstyle \perp}$ and			
	ii. the intercept will be	·			
AN	SWER:				
(a	<i>,</i>				
	ii. $4 \times 1000 = 4000$				
(b) i. $3 \times \frac{1}{2} = \frac{3}{2} = 1.5$ ii. 4				
	11 4				

9. Consider gradient descent to minimize the loss function $L = x^3 + 2y^2 - 4xy + 3$.

(a) What is the gradient of L starting at $(x_0, y_0) = (1, 2)$?

ANSWER:

The gradient is
$$(3x^2 - 4y, 4y - 4x)$$
; at $(1, 2)$, this is $(3(1^2) - 4(2), 4(2) - 4(1)) = (-5, 4)$.

(b) If we set the step size $\alpha = 1$, the next point visited by gradient descent is $(x_1, y_1) = \overline{\text{ANSWER: } (x_1, y_1) = (1, 2) - 1 \times (-5, 4) = (6, -2)}$