
1. Mark each statement True or False.

(a) In linear regression, a reasonable alternative to the cost function mean squared error =

1

N

N∑
i=1

[fw,b(xi)− yi]
2 is mean error =

1

N

N∑
i=1

[fw,b(xi)− yi].

True

False

(b) A linear SVM with decision boundary (2, 1, 2) · x+ 2 = 0 has a smaller margin between
+1 and −1 support vectors than one with boundary (6, 0, 8) · x− 3 = 0.

True

False ANSWER:
The margin for the first SVM is 2

||w|| = 2√
22+12+22

= 2
3 , while the margin for the

second is 2
||w|| =

2√
62+02+82

= 2
10 .

(c) The values for w and b that minimize negative log-likelihood in the logistic regression

model also minimize the mean squared error
1

N

N∑
i=1

[Pw,b(yi = 1)(xi)− yi]
2.

True

False ANSWER:
A predicted probability P̂w,b(yi = 1)(xi) ∈ {0, 1}, while a label yi ∈ [0, 1]. The
logistic curve does not fit the data points.

(d) The entropy of a decision tree node containing the set of examples

x1 x2 y

2 6 0
5 7 0
3 8 1

is ≈ 0.92.

True ANSWER:
The node’s y values are 0, 0, 1, so fID3(S) = P (y) = 1

|S|
∑

(x,y)∈S y = 1
3(0+0+1) = 1

3 .

H(S) =
∑

y∈{0,1}

P (y) [− log2 P (y)]

= −
(
1− 1

3

)
log2

(
1− 1

3

)
− 1

3
log2

1

3

≈ 0.92

False

(e) While gradient descent’s computation speed depends on the number of features D,
stochastic gradient descent’s computation speed does not depend on D.
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True

False ANSWER:
Even if SGD uses only one example for each iteration, it can still take longer to
process a high-D example than a low-D example.

(f) For a logistic regression model on data with one feature, the midpoint of the logistic
curve is always between the feature minimum and the feature maximum.

True

False ANSWER:
Consider, e.g., a data set whose “sample proportions” are all small.
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2. Consider the logistic regression model, P (yi = 1) =
1

1 + e−(wx+b)
.

(a) For each function below that plays a role in the model, indicate its image from among
these choices:

A. Z = integers

B. Z+ = positive integers

C. R = real numbers

D. R+ = positive real numbers

E. (0, 1) = interval from 0 to 1

Hint: The image of a function is the set of all output values it may produce.

i. f1(x) = wx+ b for x ∈ RD:

A , B , C ANSWER: , D , E

ii. f2(t) =
1

1+e−t for t ∈ R:

A , B , C , D , E ANSWER:

iii. f3(t) = e−t for t ∈ R:

A , B , C , D ANSWER: , E

(b) For the model with w = (−3, 3) and b = 3, find P̂ (y = 1|x = (2, 1)).

ANSWER:

P̂ (y = 1|x) = 1

1 + e−(wx+b)
=

1

1 + e−[(−3,3)·(2,1)+3]
=

1

1 + e0
=

1

2
.

(c) I ran some Python/scikit-learn code to make the model pictured here:
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i. For each array below, indicate the line of code that could have produced it from
among these choices:

A. model.fit(X, y)

B. model.intercept_

C. model.coef_[0]

D. model.predict(X)

E. model.predict_proba(X)[:, 1]

F. model.score(X, y)

1. array([0, 1, 1, 1]):

A , B , C , D , E , F

2. array([0.003, 0.569, 0.569, 0.859])

A , B , C , D , E , F

3. array([1.528])

A , B , C , D , E , F

4. array([-2.778])

, B , C , D , E , F

ii. How do we classify a new point at x = 0.5 if using a decision threshold of 0.5?
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ŷ = 0

ŷ ≈ 0.05

ŷ ≈ 0.95

ŷ = 1

ANSWER:
ŷ = 0. The graph shows P̂w,b(y = 1|x = 0.5) is
between 0 and 0.2 (Python says ≈ 0.12), less than
the 0.5 threshold. So we assign ŷ = 0.
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3. Here are some questions about decision trees.

(a) Consider a classification decision tree node containing the set of examples S = {(x, y)}
where x = (x1, x2, x3):

S
x1 x2 x3 y

2 11 12 1
3 6 14 1
0 8 17 0
4 10 15 1
1 7 13 0
5 9 16 1

i. The entropy of this node in bits is

.
ANSWER:
The node’s y values are 1, 1, 0, 1, 0, 1, so fID3(S) =

1
|S|

∑
(x,y)∈S y = 1

6(1 + 1 + 0 +

1 + 0 + 1) = 2
3 .

H(S) = 2
3(− log2(

2
3)) +

1
3(− log2(

1
3)) ≈ −2

3(−0.585) + 1
3(−1.585) ≈ 0.918

ii. The (feature, threshold) pair (j, t) that yields the best split for this node is feature

j = and threshold t = .
ANSWER:
Using feature j = 1 and threshold t = 1.5 (or any t ∈ [1, 2)) splits S into S− =
{(x, y) ∈ S|x(j) ≤ t} = {0, 0} and its complement S+ = {(x, y) ∈ S|x(j) > t} =
{1, 1, 1, 1}, each of which has entropy 0.
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(b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once
into two leaves) made from the set of examples S = {(x, y)} where x = x1:

S
x1 y

0 10
1 11
2 21
3 22
4 23
5 24

What value does this tree predict for x1 = 4.5? ŷ =

ANSWER:

The best split uses feature j = 1 and threshold t = 1.5, yielding a left subtree containing
the first two examples and a right subtree containing the last four. Making a predition
with x1 = 4.5 would use the right subtree. Its average y is 22.5, so the tree would predict
ŷ = 22.5.
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4. Consider this training data set:

x1 x2 x3 y

0 3 0 Red
2 0 0 Red
0 1 3 Red
0 1 2 Green
−1 0 1 Green
1 1 1 Red

We use this data set to make a prediction for y when x1 = x2 = x3 = 0 using k-NN.

(a) Compute the Euclidean distance between each example and the test example, (x1, x2, x3) =
(0, 0, 0).

(b) What is our prediction with k = 1?

(c) What is our prediction with k = 3?

ANSWER:

(a) The distances are (from top to bottom): 3, 2,
√
10,

√
5,
√
2,
√
3.

(b) The shortest distance is
√
2 and the corresponding y is Green, so we predict y = Green.

(c) The shortest three distances are
√
2,
√
3, 2 and the corresponding y are Green, Red, and

Red, so we predict y = Red.
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5. When the number D of features is large, performance of k-NN (and other local approaches
that predict using only examples near the test example) tends to deteriorate. This is known
as the curse of dimensionality.

(a) Suppose D = 1. Suppose x is uniformly distributed on [0, 1], the unit interval. We
predict a test example’s y response using only the examples in the 10% of the x range
nearest to that test example. For instance, to predict for x = 0.6, we use examples in
the range [0.55, 0.65]. On average, what proportion of the examples will we use to make
the prediction?

(Hint: There is a simple answer. This is not a trick question.)

ANSWER:

proportion = 10% = 0.1.

(b) Now suppose D = 2 and our feature are x1 and x2, with (x1, x2) uniformly distributed
on [0, 1]× [0, 1] (the unit square). For a given test example, we predict using examples
in the closest 10% of the x1 range and in the closest 10% of the x2 range. For instance,
in order to predict the response for a test example with x1 = 0.6 and x2 = 0.35, we use
examples in the range [0.55, 0.65] for x1 and in the range [0.3, 0.4] for x2. On average,
what proportion of the available examples will we use to make the prediction?

ANSWER:

proportion = 0.1× 0.1 = 0.12 = 0.01.

(c) Now suppose D = 100. Again, each feature is uniformly distributed on [0, 1], so each
example is from [0, 1]100 (the 100-dimensional “unit hypercube”). We predict a test
example’s response y using examples within the closest 10% of each feature’s range.
What proportion of the available examples will we use to make the prediction?

ANSWER:

proportion=0.1100 = 10−100.

(d) Now suppose that we wish to make a prediction for a test example by creating a D-
dimensional hypercube centered around the test example that contains, on average, 10%
of the training examples. What is the length l of each side of the hypercube for each
value of D?

Hint: Solve the equation lD = 0.1.

i. For D = 1, l =

ii. For D = 2, l =

iii. For D = 100, l =

Comment on what happens to the length l of each side as D → ∞?

ANSWER:

For

i. D = 1 we have l = 0.1;

ii. D = 2 we have l = 0.316;

iii. D = 3 we have l = 0.977.

As D → ∞, the solution for above equation tends toward 1, which means for every
feature, we should use almost all its range only to make 10% of examples can be used
for prediction.
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6. Suppose we have a soft-margin SVM for which w = (6,−3, 2) and b = 1. Consider the
example (x = (−1, 2, 1), y = −1).

(a) How does the SVM classify x?

ANSWER:

wx+ b = −9 < 0 =⇒ ŷ = −1

(b) Does (x, y) satisfy the SVM constraint? (Answer Yes or No.)

ANSWER:

wx+ b = −9 ≤ −1 =⇒ yes.

(c) What is the hinge loss associated with (x, y)?

ANSWER:

max (0, 1− yi(wxi + b)) = max (0, 1− (−1)(−9)) = max(0,−8) = 0
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7. In each situation, indicate the frequency (never, sometimes, or always) with which we will
obtain 100% accuracy on training data that contain no pairs of examples with identical feature
vectors. Suppose any hyperparameters are set to optimum values for training performance.

(a) Decision tree with N = 1 example always , sometimes , never

(b) Decision tree with N = 5 examples always , sometimes , never

(c) Hard-margin linear SVM on
linearly-separable data

always , sometimes , never

(d) Hard-margin linear SVM on
non-linearly-separable data

always , sometimes , never

(e) Soft-margin linear SVM on
non-linearly-separable data

always , sometimes , never

(f) SVM with RBF kernel on
non-linearly-separable data

always , sometimes , never

(g) k-NN with k = 1 always , sometimes , never

(h) k-NN with k = 3 always , sometimes , never

(i) Logistic regresion always , sometimes , never

8. Suppose we have the regression model y = 3x+ 4.

(a) If y is converted to 1000y (e.g., y units are changed from kilograms (kg) to grams (g)),

i. the slope will be and

ii. the intercept will be .

(b) If x is converted to 2x,

i. the slope will be and

ii. the intercept will be .

ANSWER:

(a) i. 3× 1000 = 3000

ii. 4× 1000 = 4000

(b) i. 3× 1
2 = 3

2 = 1.5

ii. 4

9. Consider gradient descent to minimize the loss function L = x3 + 2y2 − 4xy + 3.
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(a) What is the gradient of L starting at (x0, y0) = (1, 2)?

ANSWER:

The gradient is (3x2−4y, 4y−4x); at (1, 2), this is
(
3(12)− 4(2), 4(2)− 4(1)

)
= (−5, 4).

(b) If we set the step size α = 1, the next point visited by gradient descent is (x1, y1) =

ANSWER: (x1, y1) = (1, 2)− 1× (−5, 4) = (6,−2)
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