Summer 2025

1. Consider the use of gradient boosting to train a regression model on the following data:

\boldsymbol{x}	y
1	7
2	6
3	5

(a) What prediction $\hat{y} = f_0(x)$ is given by the first model at x = 2?

ANSWER:

 $\hat{y} = 6$ because $f_0(x)$ is a constant model given by $f_0(x) = \frac{1}{N} \sum_{i=1}^N y_i = \frac{1}{3} (7 + 6 + 5) = 6$.

(b) What data are used to train the second model $\hat{y} = f_1(x)$?

ANSWER:

$$\begin{array}{c|cc}
x & y \\
\hline
1 & 1 \\
2 & 0 \\
3 & -1 \\
\end{array}$$

 f_1 is trained on the original data after replacing the y values with the residuals with respect to the first model, that is with $\{e_i = y_i - f_0(x_i)\}$. Since $f_0(x) = 6$ for all x, $\{e_i\} = \{7 - 6, 6 - 6, 5 - 6\} = \{1, 0, -1\}$.

- 2. Principal Components Analysis (PCA) is a popular method for linear dimensionality reduction. Suppose that we have a dataset with N=10 examples, each composed of D=7 features. We want to find a 2-dimensional subspace via PCA that retains the most feature from this dataset.
 - (a) In the first computational step, the *Gram matrix* X^TX is found. Its shape is _____ rows by _____ columns. ANSWER: X is $X_{N\times D}=X_{10\times 7}$, so X^TX is $X_{7\times 10}^TX_{10\times 7}=(X^TX)_{7\times 7}$, i.e. 7 rows by 7 columns.
 - (b) Mark each statements about PCA as True or False.

		ANSWER: True
	ii.	It seeks a dataset with a smaller number of examples. ANSWER: False
	iii.	For each pair of principal components \mathbf{a} and \mathbf{b} , $\mathbf{a} \cdot \mathbf{b} = 0$. ANSWER: True
	iv.	For each pair of principal components \mathbf{a} and \mathbf{b} , $\mathbf{a} + \mathbf{b} = 0$. ANSWER: False
	v.	Any subset of three principal components explain most of the variability in the original data. ANSWER: False
	vi.	PCA is useful for feature selection. ANSWER: False
	vii.	Rescaling data is unnecessary before PCA because principal components have unit length whether or not the data are rescaled first. ANSWER: False
3.		using k-means on the unsupervised 1D dataset $\{x\} = \{1, 3, 5, 10, 12\}$ to create $k = 2$ Suppose the two initial randomly-chosen cluster centroids are $c_1 = 3$ and $c_2 = 5$.
	$c_1 = AN$	at are the centroids after the first iteration of k -means? = and $c_2 =$. SWER: 1 and 3 are closest to $c_1 = 3$, so the new $c_1 = \frac{1}{2}(1+3) = 2$. 0, and 12 are closest to $c_2 = 5$, so the new $c_2 = \frac{1}{3}(5+10+12) = 9$. at are the centroids after the second iteration? = and $c_2 =$. SWER: 1, 3, and 5 are closest to $c_1 = 2$, so the new $c_1 = \frac{1}{3}(1+3+5) = 3$. and 12 are closest to $c_2 = 9$, so the new $c_2 = \frac{1}{2}(10+12) = 11$.
ŧ.	For each	part, select all that apply.
	(b) Wh	ich model(s) can be trained using gradient decent? kNN logistic regression linear regression decision tree ich model(s) require looping through the data at least once for training? kNN logistic regression
	0	linear regression decision tree

i. It seeks a dataset with a smaller number of features.

(c)	Which model(s) have a fixed number of parameters?
	○ kNN ●
	○ logistic regression ●
	○ linear regression ●
	O decision tree
	○ SVM ●
(d)	Which model(s) can exhibit improved performance by scaling features?
	○ kNN ●
	○ logistic regression ●
	○ linear regression ●
	O decision tree
	○ SVM ●
(e)	Which model(s) requires the least amount of time to train?
	○ kNN ●
	O logistic regression
	O linear regression
	O decision tree
	○ SVM

O SVM with your choice of linear or RBF kernel

 \bigcirc decision tree with maximum depth 3

 \bigcirc decision tree with maximum depth 3

(d) O kNN

6. Consider kernel density estimation on the data $\{x_i\} = \{0, 1, 2\}$.

O logistic regression •; note that decision tree would require depth much higher than

(a)	Decreasing the band $\bigcirc 0$	widt	$b ext{ toward } 0 ext{ n}$	nakes the d	ensity estimate at x	= 1 tend toward:
	$\bigcirc \frac{1}{3}$					
	$\bigcirc \frac{1}{2}$					
	$\bigcirc \overset{2}{1}$					
	\bigcirc 3					
	$\bigcirc \infty$ ANSWER:)				
(b)	Decreasing the bands	vidt	h b toward 0 m	akes the de	nsity estimate at $x =$	= 1.5 tend toward:
	\bigcirc 0 ANSWER: $lacktriangle$					
	$\bigcirc \frac{1}{3}$					
	$\bigcirc \frac{1}{2}$					
	\bigcirc $\stackrel{^{2}}{1}$					
	\bigcirc 3					
	$\bigcirc \infty$					
$\{(x,$	e and two leaf nodes y) because \mathbf{x} has of ted by sampling with	nly	one feature, x	. It is follo	owed by $B = 3$ boo	
Tra	aining data	Re	sample #1	Re	sample #2	Resample #3
$x \mid$	y	\boldsymbol{x}	y	x	$\mid y \mid$	$x \mid y$
1	1	1	1	1	1	1 1
2	0	2	0	1	1	1 1
$\frac{3}{4}$	1	4	0	3	1	$\begin{array}{c c} 2 & 0 \\ 2 & 0 \end{array}$
4	0	4	0	4	0	$2 \mid 0$
Con	sider making a predic	tion	for $\mathbf{x} = 2$.			
(a)	What prediction is n	ıade	by the tree tr	ained on R	esample #1? $\hat{y} = \bot$	
	ANSWER:					
	The tree uses thresho	old i	t = 1.5 and pre-	edicts $\hat{y} = 0$).	
					_	
(b)	What prediction is -	20 d -	by the tree to	ained on D	ogample #22 û -	
(n)	What prediction is n ANSWER:	таце	e by the tree tr	ашен он К	esample #2: $y = \Box$	

7.

The tree uses threshold t=3.5 and predicts $\hat{y}=1.$

	(c)	What prediction is made by the tree trained on Resample #3? $\hat{y} = $
		The tree uses threshold $t = 1.5$ and predicts $\hat{y} = 0$.
	(d)	What prediction is made by this bagging classifier? $\hat{y} = \square$ ANSWER:
		The bagging classifier predicts $\hat{y} = 0$, the most frequent of the $B = 3$ predictions.
8.	(a)	Mark each statement as True or False.
		 i. When false positives are costly, precision is a good assessment metric. True ii. When false negatives are costly, recall is a good assessment metric. True iii. A police officer running a blood alcohol test on a driver wants high precision to
		avoid missing a drunk driver. False
		iv. The same police officer wants high recall to avoid arresting a sober driver. False
	(b)	Suppose that we want to conduct a 10-fold cross-validation.
		i. How many validation sets will we have in total? ANSWER: 10, one for each fold
		ii. How many distinct training sets will we have in total?ANSWER: 10.
	(c)	Suppose we conduct ordinary least-squares linear regression on a data set and find it works well on training data but poorly on test data. What methods could we expect to address the problem? Select all that apply.
		i. Use lasso regression on the data. Yes
		ii. Use ridge regression on the data. Yes
		iii. Use logistic regression on the data. Noiv. Run PCA on the data. Then train the linear model on PCA-reduced-dimension data. Yes
		v. Cluster the examples. Then train the linear model on cluster centers. No
	(d)	For each situation, indicate which hyperparameter search strategy, $G = \text{grid}$ search of $R = \text{random search}$, is more likely to be successful. Suppose computation time is limited
		 i. A model has two hyperparameters. The first takes one of two string values and the other takes one of three numeric values. ANSWER: G = grid search.
		ii. A model has two hyperparameters. The first takes a floating-point number in the interval [0, 1] while the second takes an integer in the range [0, 1000]. ANSWER: R = random search

9. Mark each statement True or False.

(a)	In kernel density estimation we use a weighted average of the y 's, where the weights come from Gaussians centered at the x 's, to determine the height of an approximate density curve at each x .
	\bigcirc True \bigcirc False ANSWER: \bigcirc ; there are no y 's in KDE
(b)	One-hot encoding of a categorical feature with five categories produces $2^5=32$ new binary features (or 31 if we use drop_first = True).
	○ True○ False ANSWER: ●
(c)	When principal component analysis retains some number p of principal components of a D -dimensional data set (where $0), those p components are the subset of p features that explain the most variance in the original data.$
	 ○ True ○ False ANSWER: •; while each principal component is a linear combination of features, it is not typically a feature.
10. Supp	pose we use a stacking model to do multiclass classification such that:
•	The data are: $\frac{\mathbf{x}}{(0,2)} \frac{\mathbf{y}}{(1,1)} = \frac{\mathbf{y}}{(1,1)} = \frac{\mathbf{y}}{(2,3)} = \frac{\mathbf{y}}{(2,1)} = \frac{\mathbf{y}}{($
(a)	The first model is trained on how many features? ○ 0 ○ 1 ○ 2 ANSWER: ● (It is trained on the x's.) ○ 3 ○ 4 ○ 5 ○ 6 The ground world is trained on how many features?
(b)	The second model is trained on how many features? $ \bigcirc \ 0 $ $ \bigcirc \ 1 $

	\bigcirc 2 ANSWER: \bigcirc (It is trained on the x 's.)
	\bigcirc 3
	\bigcirc 4
	\bigcirc 5
	\bigcirc 6
(c)	The meta-model is trained on how many features?
	\bigcirc 0
	\bigcirc 1
	\bigcirc 2
	\bigcirc 3
	\bigcirc 4
	\bigcirc 5
	○ 6 ANSWER: • (Its training examples are concatenated output probability vectors
	from the two base models, each of which has length 3 for a total length of 6)