STAT	451	Midterm	Errom
SIAL	451	vuaterm	r _{xam}

NetID: _		

First name:

Last name:

- 1. Do not open the exam until I say "go."
- 2. Put away everything except a pencil or pen, a calculator, and your two one-page (two sides each) notes sheets.
- 3. Show your work. Correct answers without enough work may receive no credit.
- 4. If a question is ambiguous, resolve the ambiguity in writing. We will consider grading accordingly.
- 5. The exam ends when I call time. If you continue writing after I call time, you risk a penalty. (The alternative, that you get more time than your peers, is unfair.)
- 6. You are welcome to turn your exam in to me before I call time. However, if you are still here in the last five minutes, please remain seated until I've called time (to avoid disturbing peers).

Question	Points	Earned
Q0 (cover)	1	
Q1	9	
Q2	12	
Q3	6	
Q4	12	
Q5	3	
Q6	3	
Q7	4	
Total	50	

1. Consider a decision tree node containing the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = (x_1, x_2)$:

$$\begin{array}{c|cccc} & S & \\ \hline x_1 & x_2 & y \\ \hline 4 & 9 & 1 \\ 2 & 6 & 0 \\ 5 & 7 & 0 \\ 3 & 8 & 1 \\ \hline \end{array}$$

(a) The entropy of this node in bits is _____.

ANSWER:

The node's y values are 1, 0, 0, 1, so $f_{ID3}(S) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S} y = \frac{1}{4} (1 + 0 + 0 + 1) = \frac{1}{2}$.

$$\begin{split} H(S) &= \sum_{y \in \{0,1\}} P(y) \left[-\log_2 P(y) \right] \\ &= -f_{ID3}(S) \log_2 f_{ID3}(S) - \left[1 - f_{ID3}(S) \right] \log_2 \left[1 - f_{ID3}(S) \right] \\ &= -\frac{1}{2} \log_2 \frac{1}{2} - \left(1 - \frac{1}{2} \right) \log_2 \left(1 - \frac{1}{2} \right) \\ &= -\frac{1}{2} (-1) - \frac{1}{2} (-1) \\ &= 1 \end{split}$$

(Or, since a random draw from S amounts to a coin flip, the entropy is 1 bit.)

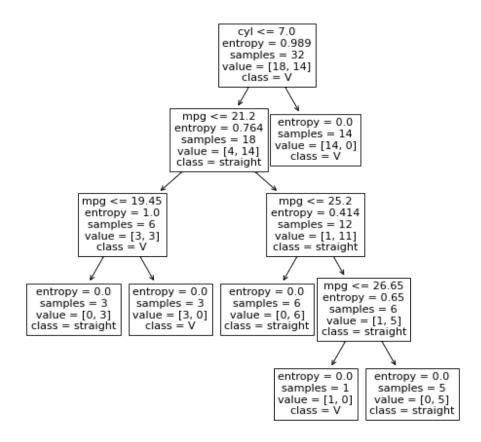
(b) The (feature, threshold) pair (j,t) that yields the best split for this node is feature j= _____ and threshold t= _____.

ANSWER:

Using feature j=2 and threshold t=7.5 (or any $t \in (7,8]$) splits S into $S_- = \{(\mathbf{x},y) \in S | x^{(j)} < t\}$ and its complement $S_+ = \{(\mathbf{x},y) \in S | x^{(j)} \ge t\}$, each of which has entropy 0.

(c) Now consider this tree:

Classify cars from mtcars as 0=V or 1=straight engine from mpg and cyl (so y is vs and X includes mpg and cyl)



This tree says a car whose gas mileage (mpg) is 26 and number of engine cylinders (cyl) is 4 has a _____ engine.

ANSWER: V

- 2. Mark each statement true or false by circling the appropriate choice.
 - (a) TRUE / FALSE An SVM makes a classification error on \mathbf{x} when $\mathbf{w}\mathbf{x} + b \in (-1, 1)$ (i.e. between -1 and 1).
 - ANSWER: FALSE. It only makes an error when \mathbf{x} is on the wrong side of $\mathbf{w}\mathbf{x} + b = 0$.
 - (b) TRUE / FALSE In logistic regression, we model P(y=1) as a linear function of \mathbf{x} . ANSWER: FALSE. We use $P(y_i=1) = \frac{1}{1+e^{-(\mathbf{w}\mathbf{x}+b)}}$, which is a nonlinear function of \mathbf{x} .
 - (c) TRUE / FALSE In linear regression, a reasonable alternative to the typical objective

function mean squared error = $\frac{1}{N} \sum_{i=1}^{N} \left[f_{\mathbf{w},b}(\mathbf{x}_i) - y_i \right]^2$ is mean error = $\frac{1}{N} \sum_{i=1}^{N} \left[f_{\mathbf{w},b}(\mathbf{x}_i) - y_i \right]$.

ANSWER: FALSE. If we use mean error, then any line through the centroid of two points would work equally well (because positive and negative errors cancel).

(d) TRUE / FALSE In a decision tree node, an entropy of 1 indicates all the node's examples have the same y value.

ANSWER: FALSE. Entropy 0 indicates a pure node.

(e) TRUE/ FALSE For training data $\{(\mathbf{x}, y)\}$ such that $\mathbf{x}_i \neq \mathbf{x}_j$ for all i and j, we can build a kNN model that classifies the training examples without error.

ANSWER: TRUE. Use k = 1.

(f) TRUE / FALSE If we train an SVM on linearly separable data, then discard all training examples which are not support vectors, and then train a new SVM on the remaining examples, the first SVM will classify unseen examples better than the second.

ANSWER: FALSE. The two SVMs are the same.

- 3. Here are two questions about feature engineering.
 - (a) Use one-hot encoding to transform the categorical feature weather into binary features with reasonable names.

(input)		(out	tput)	
weather				
sunny				
raining				
cloudy				
raining				
ANSWER:				
(input)		(output))	
weather	sunny	cloudy	raining	
sunny	1	0	0	
raining	0	0	1	
cloudy	0	1	0	
raining	0	0	1	

(b) Do min-max rescaling on feature $\mathtt{x} \colon$

(input)	(output)
x	x_rescaled
3	
1	
2	

ANSWER:

TIT TO TT EITH		
(input)	(output)	
X	x_rescaled	
3	1	
1	0	
2	0.5	

4. Consider the logistic regression model,

$$P(y_i = 1) = \frac{1}{1 + e^{-(\mathbf{w}\mathbf{x} + b)}}.$$

(a) Logistic regression is named after the log-odds of success, $\ln \frac{p}{1-p}$, where $p = P(y_i = 1)$. Show that this log-odds equals $\mathbf{w}\mathbf{x} + b$.

ANSWER:

$$\ln \frac{p}{1-p} = \ln \frac{\frac{1}{1+e^{-(\mathbf{w}\mathbf{x}+b)}}}{1-\frac{1}{1+e^{-(\mathbf{w}\mathbf{x}+b)}}}$$

$$= \ln \frac{1}{\left(1+e^{-(\mathbf{w}\mathbf{x}+b)}\right)-1}$$

$$= \ln e^{\mathbf{w}\mathbf{x}+b}$$

$$= \mathbf{w}\mathbf{x}+b, \text{ a linear function of } \mathbf{x}$$

(b) Match each function on the left that plays a role in the model with its image on the right. Hint: The *image* of a function is the set of all output values it may produce.

i.
$$\underline{} f_1(\mathbf{x}) = \mathbf{w}\mathbf{x} + b \text{ for } \mathbf{x} \in \mathbb{R}^D$$

1.
$$[0,1]$$
, the interval from 0 to 1

ii.
$$f_2(t) = \frac{1}{1+e^{-t}}$$
 for $t \in \mathbb{R}$

2.
$$\mathbb{R}_+$$
, the positive real numbers

iii. _____
$$f_3(t) = e^{-t}$$
 for $t \in \mathbb{R}$
ANSWER: (i) = 3, (ii) = 1, (iii) = 2

3.
$$\mathbb{R}$$
, the real numbers

(c) I ran some Python/scikit-learn code to make the model pictured here:



i. Match each code line on the left, with its output on the right.

_____ model.intercept_

1. array([0, 0, 0, 1])

_____ model.coef_[0]

2. array([0.003, 0.5, 0.5, 0.997])

 $\underline{\hspace{1cm}}$ model.predict(X)

3. array([5.832])

model.predict_proba(X)[:, 1]
ANSWER: 4, 3, 1, 2

4. $\operatorname{array}([0.])$

ii. How do we classify a new point at x = -0.5 if using a decision threshold of 0.7?

 $\hat{y} = 0$

ANSWER.

____ $\hat{y} \approx 0.05$

 $\hat{y} = 0$. The graph shows $\hat{P}_{\mathbf{w},b}(y = 1|x = -0.5)$ is close to 0 (Python says ≈ 0.05), way less than the

____ $\hat{y} \approx 0.95$

0.7 threshold. So we assign y=0. ($\hat{y}=0.05$ and

 $\hat{y} = 1$

 $\hat{y} = 0.95$ are not possible \hat{y} labels.)

5. e.g. Consider using $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$ to find the line fitting the points (0, -1) and (2, 3). Fill in these matrices to get started on using $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$ to find the line.

$$X = \left[\begin{array}{c} \\ \\ \end{array} \right], \, \mathbf{y} = \left[\begin{array}{c} \\ \end{array} \right]$$

(You should not continue the computation to find the line, which is y = 2x - 1.¹)

(This question was in a footnote in the notes, but I forgot to discuss it. You may answer if you wish, for 0 points.)

- (a) _____ I'm partial to you.
- (b) _____ We do not have a sense of humor we're aware of.

¹What did one regression coefficient say to the other?

ANSWER:
$$X = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$

6. Our hard-margin SVM used the constraints $\begin{cases} \mathbf{w}\mathbf{x}_i + b \ge 1 & \text{if } y_i = +1 \\ \mathbf{w}\mathbf{x}_i + b \le -1 & \text{if } y_i = -1 \end{cases}, \text{ for } i = 1, \dots, N.$

Changing from the hard-margin SVM to SVM_{new} would do what to the margin?

Increase it

_____ Decrease it.

_____ Leave it unchanged.

_____ We cannot say without more information.

ANSWER: Decrease it (to 0).

7. Consider a database consisting of these three examples:

name \mathbf{x}	age y
Karolin	20
Kathrin	30
Kerstin	40

We want to estimate Kathryn's age from her name, supposing her name is a corrupted version of one of the names in the database. (It was corrupted, e.g., by a typographical error.)

(a) Find the Hamming distance between Kathryn and each of the other three names.

name	Hamming distance to Kathryn
Karolin	
Kathrin	
Kerstin	
Kerstin	

ANSWER:

TI ID II LIE.	
name	Hamming distance to Kathryn
Karolin	4
Kathrin	1
Kerstin	5

(b) Use 2-NN (two nearest neighbors) regression to estimate Kathryn's age from her name. Kathryn's age is about _____.

ANSWER:

Kathryn's two nearest neighbors are Kathrin and Karolin. We estimate Kathryn's age as the average of those neighbors' ages, that is, $\frac{1}{2}(20+30)=25$.

For another 0 points and only if you wish, write something here to make your graders smile.