
STAT 451 Midterm Exam

(1 point for easily legible writing on this cover sheet.)

NetID:

Last name: First name:

Mark your lecture with “X”:

TuTh 1:00-2:15

TuTh 2:30-3:45

Instructions:

1. Do not open the exam until I say “go.”

2. Put away everything except a pencil or pen, a calculator, and
your one-page (two sides) notes sheet.

3. Show your work. Correct answers without at least a minimal
version of the work normally required may receive no credit.

4. If a question is ambiguous, resolve the ambiguity in writing. We
will consider grading accordingly.

5. The exam ends when I call time. If you continue writing after
I call time, you risk a penalty. (The alternative, that you get
more time than your peers, is unfair.)

6. You are welcome to turn your exam in to me before I call time.
However, if you are still here in the last five minutes, please
remain seated until I’ve called time (to avoid disturbing peers).

Question Points Earned

Q0 (cover) 1

Q1 7

Q2 3

Q3 6

Q4 6

Q5 6

Q6 6

Q7 6

Q8 4

Q9 5

Total 50

1



1. Each graph below shows six training examples for which y is binary along with the decision
boundary of a classifier trained on those examples.

Match each graph, with the letter corresponding to the classifier (further below) that produced
that graph. That is, write one of “a” through “f” in each of the blanks.

(a) DecisionTreeClassifier(criterion='entropy', max_depth=None, random_state=0)

(b) KNeighborsClassifier(n_neighbors=3, metric='euclidean')

(c) svm.SVC(kernel='linear', C=1)

(d) svm.SVC(kernel='linear', C=1000)

(e) svm.SVC(kernel='rbf', C=1, gamma=6)

(f) svm.SVC(kernel='rbf', C=1, gamma=1)

Mark with an “X” below any of the graphs in (a) that could possibly have been produced by
linear_model.LogisticRegression(C=1000).

top left

top right

center left

center right

bottom left

bottom right

2



2. Consider three multiple linear regression models, one using ordinary least squares (OLS), one
using lasso, and one using ridge regression (each with the scikit-learn defaults). Each is
trained on a random half of the rows of mtcars using y as the mpg column and X as the other
ten columns. Each is tested on the other half of mtcars.

Answer each of the following questions with one of “OLS”, “lasso”, or “ridge”. (You may use
an answer more than once, if you wish.)

(a) For which model do we expect MSE_train to be the smallest?

(b) For which model do we expect MSE_test to be the smallest?

(c) For which do we expect np.sum(np.abs(model.coef_) > 0) to be smallest?

3. Consider a decision tree node containing the following examples {(x, y)}, where x has only
one feature, x1.

x1 y

1 0
3 1
5 0
7 0

(a) The entropy of this node in bits is .

(b) There is only one feature, j = 1. The (feature, threshold) pair (j, t) that yields the best
split for this node is feature j = 1 and threshold t = .

3



4. Consider a logistic regression model with w = (−3, 3) and b = 5.

(a) Find P̂ (y = 1|x = (2, 1)).

(b) For the point x = (3, 1), I did the arithmetic and found P̂ (y = 1|x) ≈ 0.269.

How do we classify x = (3, 1) using a decision threshold of 0.5?

5. Suppose we have a soft-margin SVM for which w = (−3, 3) and b = 5. Consider the example
(x = (2, 1), y = −1).

(a) How does the SVM classify x?

(b) Does (x, y) satisfy the SVM constraint?

(c) What is the hinge loss associated with (x, y)?

4



6. Here are some questions on algorithm selection.

(a) Consider a classifier already trained on a large number N of examples and a small
number D of features. Which classifier is likely to be slowest in making a prediction on
an unseen example? (Circle one.)

i. SVM

ii. k-NN

iii. Logistic regression

iv. Balanced decision tree (a balanced tree arises when each split of a node leads to two
subnodes of about the same size; it has depth about log2N + 1)

(b) Choose the best match of properties to regression variants.

Here are the properties:

Models a probability in [0, 1].

Tends to do feature selection by setting some of the coefficients in w to zero.

Can use gradient descent or stochastic gradient descent to optimize its coefficients.

Has a greater tendency to overfit training data than the other two linear methods.

Here are the regression variants:

i. ridge

ii. ordinary least squares

iii. lasso

iv. logistic regression

7. Consider these training examples:

x y

(0, 0) 1
(1, 2) 1
(2, 3) 0
(5, 0) 0

Hint: Draw them.

(a) Find the Manhattan distance between (2, 1) and each of the other points:

x Manhattan distance from (2, 1) to x

(0, 0)

(1, 2)

(2, 3)

(5, 0)

(b) How does 3-NN (three nearest neighbors) classifiy (2, 1)?

5



8. Here are two questions about feature engineering.

(a) Consider the data 3, 1, 2, which have these summary statistics:

� population minimum 1

� population mean 2

� population median 2

� population maximum 3

� population standard deviation
√

2/3 ≈ 0.816

Do standardization rescaling on feature x:

(input) (output)
x x_rescaled

3

1

2

(b) What numbers are printed by this code? (I am not worried about the exact python
structure in which they are contained.)

from sklearn.impute import SimpleImputer

import numpy as np

X = np.array([[3], [np.nan], [2]])

imp = SimpleImputer(missing_values=np.nan, strategy='median', fill_value=None)

X_transformed = imp.fit_transform(X)

print(X_transformed)

The numbers printed are .

9. Mark each statement “T” if it is true or “F” if it is false.

(a) The hinge loss function of a soft-margin SVM gives a nonzero value for any x
such that wx + b ∈ (−1, 1) (i.e. between −1 and 1).

(b) Consider training a sequence ofN decision trees on S = {(xi, yi) : i = 1, . . . , N and xi 6=
xj for all i, j}. Suppose the ith tree is permitted maximum depth i and its accuracy on
S is ai. Then a1 < a2 < a3 < . . . < aN .

(c) Increasing k in k-NN regression leads to overfitting the training data.

(d) If we train a hard-margin SVM on linearly separable data, then discard all
training examples which are support vectors, and then train a new SVM on the remaining
examples, the first SVM will have a narrower “road” than the second.

(e) If stochastic gradient descent (SGD) and gradient descent (GD) are both run
in the same amount of time on a well-behaved function of some parameters over a large
N of training examples each having a small D of features, SGD can use more iterations
with a smaller learning rate α than GD.

6


