STAT 451 Midterm Exam NetID (mine is “jgillett” from “jgillett@wisc.edu”):

First name Last name (please write clearly so Gradescope’s OCR can read your name):

Indicate your lecture with by filling one circle completely:

O TuTh 8:00-9:15

O TuTh 11:00-12:15

Instructions:
1. Please sit in columns with two empty seats separating columns.

2. Do not open the exam until I say “go.”

3. Put away everything except a pencil or pen, a calculator, and Question | Points | Barned

your two one-page (two sides each) notes sheets. Q0 (cover) 5
4. For questions with circles in front of the answers, fill in one Q1 12
circle completely. Ok?
Q2 8
@ ves
O No Q3 12
Q4 12

5. Show your work. Correct answers without at least a minimal

version of the work normally required may receive no credit. Q5 14

answer in the box; work should be outside the box. Q6 12

For a question with an answer box “I:L’ write only the
Q7 16

6. If you continue writing or do not turn in your exam when I say

time is up, you risk a penalty. (The alternative, that you get Q8 12

more time than your peers, is unfair.)

Total 100

7. If a question is ambiguous, resolve the ambiguity in writing. We
will consider grading accordingly. e.g.

e I think “average” refers to the population mean p (not the
sample mean X).

e [ think “linear regression” refers to OLS, not ridge or lasso.



1. Here are some questions about decision trees.

(a) Consider a classification decision tree node containing the set of examples S = {(x,y)}
where x = (x1, x2, 23):

S
r1 T2 T3 |Y
2 11 121
3 6 141
0 8 17]0
4 10 1511
1 7 1310
5 9 16 |1

i. The entropy of this node in bits is

ii. The (feature, threshold) pair (j,t) that yields the best split for this node is feature

] = and threshold ¢t =

(b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once
into two leaves) made from the set of examples S = {(x,y)} where x = z1:
S

T Y
10
11
21
22
23
24

QU W N~ O

What value does this tree predict for 1 = 4.57 § =




2. Here are questions about feature engineering.

(a) Consider the data -5, 5, 5, 5, 5, which have these summary statistics:
e minimum -5
e mean 3
e median 5

e maximum 5

(population) standard deviation 4

Do standardization rescaling on feature x:

(input) | (output)
X x_rescaled
-5

(b) Use one-hot encoding to transform the categorical feature power_source into binary
features with reasonable names that are in alphabetical order.

(input) (output)
power_source
grid

solar

generator

grid




3. Consider the gradient descent algorithm.

(a) Consider applying gradient descent with step size & = 0.1 to find the x that minimizes
the function f(x) = f ((z(V),2?)) = (2 — 1)2 + (2 + 2)2 starting from xo = (0, 0).
Find the value x; after one iteration.

X1 =

(b) Mark each statement as true or false.

e Gradient descent can fail to converge on a convex function if step size « is such that
it gets stuck in a cycle, oscillating between two or several values.
O True
O False

e For a non-convex function, gradient descent can fail to converge by descending
without bound.
O True
O False

e Gradient descent can fail to converge if it gets stuck in a local minimum.
O True
O False

e Gradient descent can fail to converge on a convex function if the step size a > 0 is
too large.
O True
O False



4. Consider 3-NN (three nearest neighbors) using the Minkowski distance with p = 1.

(a) Find the distance from z = (2, 2) to each of the other points x:

X y Distance from z to x
(-1,-1) 1
(0, 1) 0
(1, 0) 0
(2,3) 1

(b) How does 3-NN classifiy z?

<
I

(c) How does weighted 3-NN classifiy z?

<
Il

(d) What y value does 3-NN regression predict for z?

<<
Il




5. Consider finding the linear regression line by hand for the points {(x,y)} = {(z,y)} =
{(1,2),(2,4),(3,3)}. Match each mathematical quantity on the left with its value on the
right. (Hint: Very little arithmetic is required.)

(a) X =
WEOO®E©

(b) XTX =

WEHOOE®E©

(c) y=
DWEHOOE®®E o 2]

(d) w= (D) 421
ADEOOE®®E J

(¢) 5=
WEOO®®©

(f) fw,b(B) =

WEHO®OE®E©

(g) intercept =

WEHOOE®E©



6. Here are some questions on support vector machines.

(a) Suppose we have a soft-margin SVM for which w = (2,3) and b = —1. How does the
SVM classify (x = (1,1),y =1)?

(b) Suppose we have some training data {(x;,y;)}2

,—1 (where x; is 2D) in matrices X and y.

We have plotted the data with y = —1 examples red and y = 1 examples blue. Which
line of code gives the best model for predicting new examples?

For each question, write the best answer from among these lines labeled “A” thorugh
“H”‘

A:

—e

EQW@UQW

clf
clf
clf
clf
clf
clf
clf

svm.

Svm.

svm.

svm.

svm.

Svm.

svm.

SVC(kernel='linear', C=1); clf.fit(X, y)
SVC(kernel='linear', C=1000); clf.fit(X, y)
SVC(kernel="rbf", C=1, gamma=1); clf.fit(X, y)
SVC(kernel="rbf", C=1, gamma=10); clf.fit(X, y)
SVC(kernel="euclidean", C=1, gamma=2); clf.fit(X, y)
SVC(kernel="euclidean", C=1000, gamma=2); clf.fit(X, y)
SVC(kernel="gini", C=1); clf.fit(X, y)
m.SVC(kernel="gini", C=1000); clf.fit(X, y)

@.@@@@@@

The red points are scattered between x; = 0 and x; = 27 and roughly along
T9 = sinxy, a wave. The blue points are scattered over the same x7 interval and
roughly along xzo = sinz; + 1, a wave 1 higher than the first wave.

HOIOIOIOIOIGIOI0)

The data consist of two clouds of points, one red and one blue, that are linearly-
separable except for a few outliers of each color.

i H®EOD®® G ®

The data are mixed red and blue points scattered randomly in the disk 23 + 3 < 1.



7. Mark each statement True or False.

(a)

In linear regression, a reasonable alternative to the cost function mean squared error =

N N

1

N Z [fwp(Xi) — yi)? is sum of squared error = Z [fws(xi) — il
i=1 i=1

O True

O False

For the soft-margin SVM with decision boundary wx + b = 0 where w = (1,2) and
b = 3, the example (x,y) = ((4,5), —1) has hinge loss 18.

O True

O False

For training data {(x,y)} such that x; # x; for all ¢ and j, we can build a 3NN model
that classifies the training examples without error.

O True

O False

If we train a hard-margin linear SVM on linearly separable data, then discard train-
ing examples which are support vectors, and then train a new SVM on the remaining
examples, the first SVM will have a wider “road” than the second.

O True

O False

A linear SVM with decision boundary (1,2,2) - x — 2 = 0 has a smaller margin between
+1 and —1 support vectors than one with boundary (1,4,8) -x+ 3 = 0.

O True

O False

Every decision tree regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.

O True
O False

Every k-NN regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.
O True
O False

In logistic regression, we use the natural log function to facilitate finding a closed-form
expression for the coefficients w and b in terms of the data.

O True
O False



8. Consider a logistic regression model with w = (1,2) and b = 0.

(a) From the logistic regression model represented in the figure, estimate the likelihood of
an NFL field goal kicker making two field goals in a row, one from 20 yards and one
from 60. We may suppose these attempts are independent and make other reasonable
simplifiying assumptions.

12,410 NFL Field Goals, 2010-2022
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P(NFL kicker makes the two field goals) ~ . (Give an estimate.)

(b) In calculating the coefficients for a logistic regression model, why do we minimize negative
log likelihood instead of maximizing likelihood? Mark each statement as a true or false.
i. A product of probabilities can overflow in fixed-precision computer arithmetic.
O True
O False

ii. A product of probabilities can underflow in fixed-precision computer arithmetic.
O True
O False

iii. The natural log of a product is naturally expressed as a sum, and differentiating a
sum is easier than differentiating a product.
O True
O False

iv. The natural log is strictly increasing, so maximizing the likelihood is the same as
minimizing the negative log likelihood.
O True
O False



