
STAT 451 Midterm Exam NetID (mine is “jgillett” from “jgillett@wisc.edu”):

First name Last name (please write clearly so Gradescope’s OCR can read your name):

Indicate your lecture with by filling one circle completely:

TuTh 8:00-9:15

TuTh 11:00-12:15

Instructions:

1. Please sit in columns with two empty seats separating columns.

2. Do not open the exam until I say “go.”

3. Put away everything except a pencil or pen, a calculator, and
your two one-page (two sides each) notes sheets.

4. For questions with circles in front of the answers, fill in one
circle completely. Ok?

Yes

No

5. Show your work. Correct answers without at least a minimal
version of the work normally required may receive no credit.
For a question with an answer box “ ,” write only the
answer in the box; work should be outside the box.

6. If you continue writing or do not turn in your exam when I say
time is up, you risk a penalty. (The alternative, that you get
more time than your peers, is unfair.)

7. If a question is ambiguous, resolve the ambiguity in writing. We
will consider grading accordingly. e.g.

� I think “average” refers to the population mean µ (not the
sample mean X̄).

� I think “linear regression” refers to OLS, not ridge or lasso.

Question Points Earned

Q0 (cover) 2

Q1 12

Q2 8

Q3 12

Q4 12

Q5 14

Q6 12

Q7 16

Q8 12

Total 100
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1. Here are some questions about decision trees.

(a) Consider a classification decision tree node containing the set of examples S = {(x, y)}
where x = (x1, x2, x3):

S
x1 x2 x3 y

2 11 12 1
3 6 14 1
0 8 17 0
4 10 15 1
1 7 13 0
5 9 16 1

i. The entropy of this node in bits is

.

ii. The (feature, threshold) pair (j, t) that yields the best split for this node is feature

j = and threshold t = .

(b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once
into two leaves) made from the set of examples S = {(x, y)} where x = x1:

S
x1 y

0 10
1 11
2 21
3 22
4 23
5 24

What value does this tree predict for x1 = 4.5? ŷ =
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2. Here are questions about feature engineering.

(a) Consider the data -5, 5, 5, 5, 5, which have these summary statistics:

� minimum -5

� mean 3

� median 5

� maximum 5

� (population) standard deviation 4

Do standardization rescaling on feature x:

(input) (output)
x x rescaled

-5

5

5

5

5

(b) Use one-hot encoding to transform the categorical feature power_source into binary
features with reasonable names that are in alphabetical order.

(input) (output)
power source

grid

solar

generator

grid
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3. Consider the gradient descent algorithm.

(a) Consider applying gradient descent with step size α = 0.1 to find the x that minimizes

the function f(x) = f
(
(x(1), x(2))

)
=

(
x(1) − 1

)2
+
(
x(2) + 2

)2
starting from x0 = (0, 0).

Find the value x1 after one iteration.

x1 = .

(b) Mark each statement as true or false.

� Gradient descent can fail to converge on a convex function if step size α is such that
it gets stuck in a cycle, oscillating between two or several values.

True

False

� For a non-convex function, gradient descent can fail to converge by descending
without bound.

True

False

� Gradient descent can fail to converge if it gets stuck in a local minimum.

True

False

� Gradient descent can fail to converge on a convex function if the step size α > 0 is
too large.

True

False
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4. Consider 3-NN (three nearest neighbors) using the Minkowski distance with p = 1.

(a) Find the distance from z = (2, 2) to each of the other points x:

x y Distance from z to x

(−1,−1) 1

(0, 1) 0

(1, 0) 0

(2, 3) 1

(b) How does 3-NN classifiy z?

ŷ =

(c) How does weighted 3-NN classifiy z?

ŷ =

(d) What y value does 3-NN regression predict for z?

ŷ =
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5. Consider finding the linear regression line by hand for the points {(x, y)} = {(x, y)} =
{(1, 2), (2, 4), (3, 3)}. Match each mathematical quantity on the left with its value on the
right. (Hint: Very little arithmetic is required.)

(a) X =

A B C D E F G

(b) XTX =

A B C D E F G

(c) y =

A B C D E F G

(d) w =

A B C D E F G

(e) ŷ =

A B C D E F G

(f) fw,b(3) =

A B C D E F G

(g) intercept =

A B C D E F G

(A) 3.5

(B)

[
3 6
6 14

]

(C)

[
2
0.5

]

(D)

24
3



(E)

2.53.0
3.5


(F) 2

(G)

1 1
1 2
1 3


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6. Here are some questions on support vector machines.

(a) Suppose we have a soft-margin SVM for which w = (2, 3) and b = −1. How does the
SVM classify (x = (1, 1), y = 1)?

.

(b) Suppose we have some training data {(xi, yi)}Ni=1 (where xi is 2D) in matrices X and y.
We have plotted the data with y = −1 examples red and y = 1 examples blue. Which
line of code gives the best model for predicting new examples?

For each question, write the best answer from among these lines labeled “A” thorugh
“H”.

A: clf = svm.SVC(kernel='linear', C=1); clf.fit(X, y)

B: clf = svm.SVC(kernel='linear', C=1000); clf.fit(X, y)

C: clf = svm.SVC(kernel="rbf", C=1, gamma=1); clf.fit(X, y)

D: clf = svm.SVC(kernel="rbf", C=1, gamma=10); clf.fit(X, y)

E: clf = svm.SVC(kernel="euclidean", C=1, gamma=2); clf.fit(X, y)

F: clf = svm.SVC(kernel="euclidean", C=1000, gamma=2); clf.fit(X, y)

G: clf = svm.SVC(kernel="gini", C=1); clf.fit(X, y)

H: clf = svm.SVC(kernel="gini", C=1000); clf.fit(X, y)

i. A B C D E F G H
The red points are scattered between x1 = 0 and x1 = 2π and roughly along
x2 = sinx1, a wave. The blue points are scattered over the same x1 interval and
roughly along x2 = sinx1 + 1, a wave 1 higher than the first wave.

ii. A B C D E F G H
The data consist of two clouds of points, one red and one blue, that are linearly-
separable except for a few outliers of each color.

iii. A B C D E F G H

The data are mixed red and blue points scattered randomly in the disk x21+x22 ≤ 1.
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7. Mark each statement True or False.

(a) In linear regression, a reasonable alternative to the cost function mean squared error =

1

N

N∑
i=1

[fw,b(xi)− yi]
2 is sum of squared error =

N∑
i=1

[fw,b(xi)− yi]
2.

True

False

(b) For the soft-margin SVM with decision boundary wx + b = 0 where w = (1, 2) and
b = 3, the example (x, y) = ((4, 5),−1) has hinge loss 18.

True

False

(c) For training data {(x, y)} such that xi ̸= xj for all i and j, we can build a 3NN model
that classifies the training examples without error.

True

False

(d) If we train a hard-margin linear SVM on linearly separable data, then discard train-
ing examples which are support vectors, and then train a new SVM on the remaining
examples, the first SVM will have a wider “road” than the second.

True

False

(e) A linear SVM with decision boundary (1, 2, 2) · x− 2 = 0 has a smaller margin between
+1 and −1 support vectors than one with boundary (1, 4, 8) · x+ 3 = 0.

True

False

(f) Every decision tree regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.

True

False

(g) Every k-NN regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.

True

False

(h) In logistic regression, we use the natural log function to facilitate finding a closed-form
expression for the coefficients w and b in terms of the data.

True

False

8



8. Consider a logistic regression model with w = (1, 2) and b = 0.

(a) From the logistic regression model represented in the figure, estimate the likelihood of
an NFL field goal kicker making two field goals in a row, one from 20 yards and one
from 60. We may suppose these attempts are independent and make other reasonable
simplifiying assumptions.

P (NFL kicker makes the two field goals) ≈ . (Give an estimate.)

(b) In calculating the coefficients for a logistic regression model, why do we minimize negative
log likelihood instead of maximizing likelihood? Mark each statement as a true or false.

i. A product of probabilities can overflow in fixed-precision computer arithmetic.

True

False

ii. A product of probabilities can underflow in fixed-precision computer arithmetic.

True

False

iii. The natural log of a product is naturally expressed as a sum, and differentiating a
sum is easier than differentiating a product.

True

False

iv. The natural log is strictly increasing, so maximizing the likelihood is the same as
minimizing the negative log likelihood.

True

False
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