STAT 451 Midterm Exam NetID (mine is "jgillett" from "jgillett@wisc.edu"):

First name Last name (please write clearly so Gradescope's OCR can read your name):

Indicate your lecture with by filling one circle completely:

○ TuTh 8:00-9:15

○ TuTh 11:00-12:15

Instructions:

- 1. Please sit in columns with two empty seats separating columns.
- 2. Do not open the exam until I say "go."
- 3. Put away everything except a pencil or pen, a calculator, and your two one-page (two sides each) notes sheets.
- 4. For questions with circles in front of the answers, fill in one circle completely. Ok?

- 5. Show your work. Correct answers without at least a minimal version of the work normally required may receive no credit. For a question with an answer box "_____," write only the answer in the box; work should be outside the box.
- 6. If you continue writing or do not turn in your exam when I say time is up, you risk a penalty. (The alternative, that you get more time than your peers, is unfair.)
- 7. If a question is ambiguous, resolve the ambiguity in writing. We will consider grading accordingly. e.g.
 - I think "average" refers to the population mean μ (not the sample mean \bar{X}).
 - I think "linear regression" refers to OLS, not ridge or lasso.

Question	Points	Earned
Q0 (cover)	2	
Q1	12	
Q2	8	
Q3	12	
Q4	12	
Q5	14	
Q6	12	
Q7	16	
Q8	12	
Total	100	

- 1. Here are some questions about decision trees.
 - (a) Consider a classification decision tree node containing the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = (x_1, x_2, x_3)$:

	S	1		
x_1	x_2	x_3	y	
2	11	12	1	
3	6	14	1	
0	8	17	0	
4	10	15	1	
1	7	13	0	
5	9	16	1	
i ′	The e	entro	nv of	th

i. <u>The entropy of this node in bits is</u>

- ii. The (feature, threshold) pair (j, t) that yields the best split for this node is feature j = and threshold t =.
- (b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once into two leaves) made from the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = x_1$:

S		
x_1	y	
0	10	
1	11	
2	21	
3	22	
4	23	
5	24	
	I.	

What value does this tree predict for $x_1 = 4.5$? $\hat{y} = $	
--	--

- 2. Here are questions about feature engineering.
 - (a) Consider the data -5, 5, 5, 5, 5, which have these summary statistics:
 - minimum -5
 - mean 3
 - $\bullet \mod 5$
 - maximum 5
 - (population) standard deviation 4

Do standardization rescaling on feature $\mathbf{x}:$

(input)	(output)
х	$x_rescaled$
-5	
5	
5	
5	
5	

(b) Use one-hot encoding to transform the categorical feature power_source into binary features with reasonable names that are in alphabetical order.

(input)	(output)
power_source	
grid	
solar	
generator	
grid	

- 3. Consider the gradient descent algorithm.
 - (a) Consider applying gradient descent with step size $\alpha = 0.1$ to find the **x** that minimizes the function $f(\mathbf{x}) = f((x^{(1)}, x^{(2)})) = (x^{(1)} 1)^2 + (x^{(2)} + 2)^2$ starting from $\mathbf{x}_0 = (0, 0)$. Find the value \mathbf{x}_1 after one iteration.

(b) Mark each statement as true or false.

- Gradient descent can fail to converge on a convex function if step size α is such that it gets stuck in a cycle, oscillating between two or several values.
 - O True

○ False

- For a non-convex function, gradient descent can fail to converge by descending without bound.
 - O True
 - False
- Gradient descent can fail to converge if it gets stuck in a local minimum.
 - True
 - False
- Gradient descent can fail to converge on a convex function if the step size $\alpha > 0$ is too large.
 - True
 - False

4. Consider 3-NN (three nearest neighbors) using the Minkowski distance with p = 1.

x	y	Distance from \mathbf{z} to \mathbf{x}
(-1, -1)	1	
(0, 1)	0	
(1, 0)	0	
(2, 3)	1	

(a) Find the distance from $\mathbf{z} = (2, 2)$ to each of the other points \mathbf{x} :

(b) How does 3-NN classifiy **z**?

~	
y =	

(c) How does weighted 3-NN classifiy \mathbf{z} ?

(d) What y value does 3-NN regression predict for \mathbf{z} ?

- 5. Consider finding the linear regression line by hand for the points $\{(\mathbf{x}, y)\} = \{(x, y)\} = \{(1, 2), (2, 4), (3, 3)\}$. Match each mathematical quantity on the left with its value on the right. (Hint: Very little arithmetic is required.)
 - (a) $\mathbf{X} =$ (A) (B) (C) (D) (E) (F) (G)
 - (b) $\mathbf{X}^T \mathbf{X} =$ (A) (B) (C) (D) (E) (F) (G)
 - (c) $\mathbf{y} =$ (A) (B) (C) (D) (E) (F) (G)
 - (d) $\mathbf{w} =$ (A) (B) (C) (D) (E) (F) (G)
 - (e) $\hat{\mathbf{y}} =$ (A) (B) (C) (D) (E) (F) (G)
 - (f) $f_{\mathbf{w},b}(3) =$ (A) (B) (C) (D) (E) (F) (G)
- (C) $\begin{bmatrix} 2\\ 0.5 \end{bmatrix}$ (D) $\begin{bmatrix} 2\\ 4\\ 3 \end{bmatrix}$ (E) $\begin{bmatrix} 2.5\\ 3.0\\ 3.5 \end{bmatrix}$ (F) 2 (G) $\begin{bmatrix} 1 & 1\\ 1 & 2\\ 1 & 3 \end{bmatrix}$

(A) 3.5

(B)

 $\begin{bmatrix} 3\\ 6 \end{bmatrix}$

 $\begin{bmatrix} 6\\ 14 \end{bmatrix}$

(g) intercept = (A) (B) (C) (D) (E) (F) (G)

- 6. Here are some questions on support vector machines.
 - (a) Suppose we have a soft-margin SVM for which $\mathbf{w} = (2,3)$ and b = -1. How does the SVM classify $(\mathbf{x} = (1,1), y = 1)$?

- (b) Suppose we have some training data {(x_i, y_i)}^N_{i=1} (where x_i is 2D) in matrices X and y. We have plotted the data with y = -1 examples red and y = 1 examples blue. Which line of code gives the best model for predicting new examples? For each question, write the best answer from among these lines labeled "A" thorugh "H".
 - A: clf = svm.SVC(kernel='linear', C=1); clf.fit(X, y)
 - B: clf = svm.SVC(kernel='linear', C=1000); clf.fit(X, y)
 - C: clf = svm.SVC(kernel="rbf", C=1, gamma=1); clf.fit(X, y)
 - D: clf = svm.SVC(kernel="rbf", C=1, gamma=10); clf.fit(X, y)
 - E: clf = svm.SVC(kernel="euclidean", C=1, gamma=2); clf.fit(X, y)
 - F: clf = svm.SVC(kernel="euclidean", C=1000, gamma=2); clf.fit(X, y)

```
G: clf = svm.SVC(kernel="gini", C=1); clf.fit(X, y)
```

- H: clf = svm.SVC(kernel="gini", C=1000); clf.fit(X, y)
- i. (A) (B) (C) (D) (E) (F) (G) (H) The red points are scattered between $x_1 = 0$ and $x_1 = 2\pi$ and roughly along $x_2 = \sin x_1$, a wave. The blue points are scattered over the same x_1 interval and roughly along $x_2 = \sin x_1 + 1$, a wave 1 higher than the first wave.
- ii. (A)(B)(C)(D)(E)(F)(G)(H)The data consist of two clouds of points, one red and one blue, that are linearlyseparable except for a few outliers of each color.
- iii. (A) (B) (C) (D) (E) (F) (G) (H) The data are mixed red and blue points scattered randomly in the disk $x_1^2 + x_2^2 \le 1$.

- 7. Mark each statement True or False.
 - (a) In linear regression, a reasonable alternative to the cost function mean squared error = $\frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) - y_i]^2 \text{ is sum of squared error} = \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) - y_i]^2.$ $\bigcirc \text{ True}$ $\bigcirc \text{ False}$
 - (b) For the soft-margin SVM with decision boundary $\mathbf{wx} + b = 0$ where $\mathbf{w} = (1, 2)$ and b = 3, the example $(\mathbf{x}, y) = ((4, 5), -1)$ has hinge loss 18.
 - True
 - False
 - (c) For training data $\{(\mathbf{x}, y)\}$ such that $\mathbf{x}_i \neq \mathbf{x}_j$ for all i and j, we can build a 3NN model that classifies the training examples without error.
 - \bigcirc True \bigcirc False
 -) False
 - (d) If we train a hard-margin linear SVM on linearly separable data, then discard training examples which are support vectors, and then train a new SVM on the remaining examples, the first SVM will have a wider "road" than the second.
 - ⊖ True
 - False
 - (e) A linear SVM with decision boundary $(1, 2, 2) \cdot \mathbf{x} 2 = 0$ has a smaller margin between +1 and -1 support vectors than one with boundary $(1, 4, 8) \cdot \mathbf{x} + 3 = 0$.
 - True

○ False

(f) Every decision tree regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.

O True

O False

(g) Every k-NN regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.

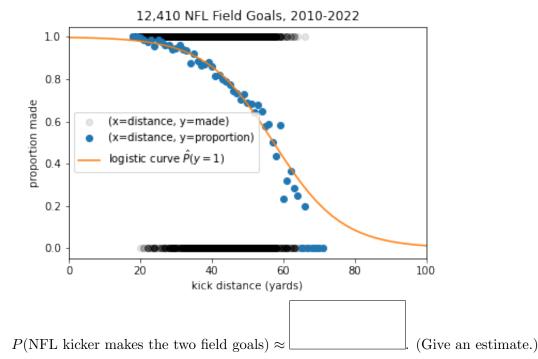
O True

○ False

- (h) In logistic regression, we use the natural log function to facilitate finding a closed-form expression for the coefficients \mathbf{w} and b in terms of the data.
 - O True

○ False

- 8. Consider a logistic regression model with $\mathbf{w} = (1, 2)$ and b = 0.
 - (a) From the logistic regression model represented in the figure, estimate the likelihood of an NFL field goal kicker making two field goals in a row, one from 20 yards and one from 60. We may suppose these attempts are independent and make other reasonable simplifying assumptions.



- (b) In calculating the coefficients for a logistic regression model, why do we minimize negative log likelihood instead of maximizing likelihood? Mark each statement as a true or false.
 - i. A product of probabilities can overflow in fixed-precision computer arithmetic.
 - True
 - False
 - ii. A product of probabilities can underflow in fixed-precision computer arithmetic.
 - O True
 - O False
 - iii. The natural log of a product is naturally expressed as a sum, and differentiating a sum is easier than differentiating a product.
 - True

○ False

- iv. The natural log is strictly increasing, so maximizing the likelihood is the same as minimizing the negative log likelihood.
 - ⊖ True
 - False