STAT 451 Midterm Exam NetID (mine is "jgillett" from "jgillett@wisc.edu"):

First name Last name (please write clearly so Gradescope's OCR can read your name):

Indicate your lecture with by filling one circle completely:

○ TuTh 8:00-9:15

○ TuTh 11:00-12:15

Instructions:

- 1. Please sit in columns with two empty seats separating columns.
- 2. Do not open the exam until I say "go."
- 3. Put away everything except a pencil or pen, a calculator, and your two one-page (two sides each) notes sheets.
- 4. For questions with circles in front of the answers, fill in one circle completely. Ok?

- 5. Show your work. Correct answers without at least a minimal version of the work normally required may receive no credit. For a question with an answer box "_____," write only the answer in the box; work should be outside the box.
- 6. If you continue writing or do not turn in your exam when I say time is up, you risk a penalty. (The alternative, that you get more time than your peers, is unfair.)
- 7. If a question is ambiguous, resolve the ambiguity in writing. We will consider grading accordingly. e.g.
 - I think "average" refers to the population mean μ (not the sample mean \bar{X}).
 - I think "linear regression" refers to OLS, not ridge or lasso.

Question	Points	Earned
Q0 (cover)	2	
Q1	12	
Q2	8	
Q3	12	
Q4	12	
Q5	14	
Q6	12	
Q7	16	
Q8	12	
Total	100	

- 1. Here are some questions about decision trees.
 - (a) Consider a classification decision tree node containing the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = (x_1, x_2, x_3)$:

S			
x_1	x_2	x_3	y
2	11	12	1
3	6	14	1
0	8	17	0
4	10	15	1
1	7	13	0
5	9	16	1

i. The entropy of this node in bits is

ANSWER:

The node's y values are 1, 1, 0, 1, 0, 1, so $f_{ID3}(S) = \frac{1}{|S|} \sum_{(\mathbf{x},y)\in S} y = \frac{1}{6}(1+1+0+1+0+1) = \frac{2}{3}$. $H(S) = \frac{2}{3}(-\log_2(\frac{2}{3})) + \frac{1}{3}(-\log_2(\frac{1}{3})) \approx -\frac{2}{3}(-0.585) + \frac{1}{3}(-1.585) \approx 0.918$

ii. The (feature, threshold) pair (j, t) that yields the best split for this node is feature

<i>j</i> =	$_$ and threshold $t = $	
ANSWER:		

Using feature j = 1 and threshold t = 1.5 (or any $t \in [1, 2)$) splits S into $S_{-} = \{(\mathbf{x}, y) \in S | x^{(j)} \leq t\} = \{0, 0\}$ and its complement $S_{+} = \{(\mathbf{x}, y) \in S | x^{(j)} > t\} = \{1, 1, 1, 1\}$, each of which has entropy 0.

- (b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once into two leaves) made from the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = x_1$:
 - $\begin{array}{c|c|c}
 S \\
 \hline
 x_1 & y \\
 \hline
 0 & 10 \\
 1 & 11 \\
 2 & 21 \\
 3 & 22 \\
 4 & 23 \\
 5 & 24 \\
 \end{array}$

What value does this tree predict for $x_1 = 4.5$? $\hat{y} =$ ______ANSWER: 22.5

The best split uses feature j = 1 and threshold t = 1.5, yielding a left subtree containing the first two examples and a right subtree containing the last four. Making a predition with $x_1 = 4.5$ would use the right subtree. Its average y is 22.5, so the tree would predict $\hat{y} = 22.5$.

- 2. Here are questions about feature engineering.
 - (a) Consider the data -5, 5, 5, 5, 5, which have these summary statistics:
 - minimum -5
 - mean 3
 - $\bullet \mod 5$
 - maximum 5
 - (population) standard deviation 4

Do standardization rescaling on feature \mathbf{x} :

(input)	(output)
x	$x_rescaled$
-5	ANSWER: -2
5	ANSWER: $\frac{1}{2}$
1	•

Or, if we mistakenly use the sample standard deviation $s = \sqrt{20} \approx 4.47$ instead of the population standard deviation $\sigma = 4$, we get this answer (which should receive only a tiny grading penalty, like 0.25 point):

x x_rescaled

- 0 -1.79
- 5 0.45
- 5 0.45
- 5 0.45
- 5 0.45

(b) Use one-hot encoding to transform the categorical feature power_source into binary features with reasonable names that are in alphabetical order.

(input)		(out	put)	
power_source				
grid				
solar				
generator				
grid				
ANSWER:				
(input)	(ou	itput)		
power_source	generator	grid	solar	
grid	0	1	0	
solar	0	0	1	
generator	1	0	0	
grid	0	1	0	

- 3. Consider the gradient descent algorithm.
 - (a) Consider applying gradient descent with step size $\alpha = 0.1$ to find the **x** that minimizes the function $f(\mathbf{x}) = f((x^{(1)}, x^{(2)})) = (x^{(1)} 1)^2 + (x^{(2)} + 2)^2$ starting from $\mathbf{x}_0 = (0, 0)$. Find the value \mathbf{x}_1 after one iteration.

 $\mathbf{x}_{1} =$ ANSWER: $\nabla f(\mathbf{x}) = (2(x^{(1)} - 1), 2(x^{(2)} + 2)), \text{ which is } (-2, 4) \text{ at } \mathbf{x} = (0, 0).$ Move to $\mathbf{x}_{1} = \mathbf{x}_{0} - \alpha \nabla f(\mathbf{x}_{0}) = (0, 0) - (-0.2, 0.4) = (0.2, -0.4).$

- (b) Mark each statement as true or false.
 - Gradient descent can fail to converge on a convex function if step size α is such that it gets stuck in a cycle, oscillating between two or several values.
 - \bigcirc True ANSWER: \bigcirc
 - O False
 - For a non-convex function, gradient descent can fail to converge by descending without bound.
 - True
 - False

ANSWER:

I regret asking this question.

 $y = -e^x$ is an example of a non-convex function on which gradient descent can descend without bound, so originally I marked it True.

In fall 2024 a student persuaded me I should have marked it False. I don't remember the reason; it involved me understanding "fail to converge" to mean "fail to converge to the global minimum" when it doesn't mean that.

By spring 2025 I am back to True.

Waffling is bad, so I withdraw the question.

- Gradient descent can fail to converge if it gets stuck in a local minimum.
 - \bigcirc True ANSWER: \bigcirc
 - False
- Gradient descent can fail to converge on a convex function if the step size α > 0 is too large.
 - \bigcirc True ANSWER: \bigcirc
 - False

4. Consider 3-NN (three nearest neighbors) using the Minkowski distance with p = 1.

x	y	Distance from ${\bf z}$ to ${\bf x}$
(-1, -1)	1	ANSWER: 6
(0, 1)	0	ANSWER: 3
	0	
(1, 0)	0	ANSWER: 3
(2, 3)	1	ANSWER: 1
	N T N T	1

(a) Find the distance from $\mathbf{z} = (2, 2)$ to each of the other points \mathbf{x} :

(b) How does 3-NN classify z?

ANSWER: 0

The 3-NN have distances 1, 3, and 3, and y values 0, 0, and 1. 0 is most frequent.

(c) How does weighted 3-NN classifiy z?

ANSWER: 1

The reciprocals of the 3 smallest distances $\{d_i\}$ are $\left\{\frac{1}{d_i}\right\}$: $\frac{1}{1}$, $\frac{1}{3}$, and $\frac{1}{3}$. The weight on $\hat{y} = 1$ is 1. The weight on $\hat{y} = 0$ is $\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$.

(d) What y value does 3-NN regression predict for \mathbf{z} ?

ANSWER: $\hat{y} = \frac{1}{3}(0+0+1) = \frac{1}{3}$

5. Consider finding the linear regression line by hand for the points $\{(\mathbf{x}, y)\} = \{(x, y)\} = \{(1, 2), (2, 4), (3, 3)\}$. Match each mathematical quantity on the left with its value on the right. (Hint: Very little arithmetic is required.)

- (a) $\mathbf{X} =$ (A) (B) (C) (D) (E) (F) (G) (G: must by 3×2
- (b) $\mathbf{X}^T \mathbf{X} =$ (A) (B) (C) (D) (E) (F) (G) B: must be 2 × 2
- (c) $\mathbf{y} =$ (A) (B) (C) (D) (E) (F) (G) D: from data
- (d) $\mathbf{w} =$ (A) (B) (C) (D) (E) (F) (G) C: must be 2×1
- (e) $\hat{\mathbf{y}} =$ (A) (B) (C) (D) (E) (F) (G)

E: must be 3×1 and D is taken by **y** $\begin{array}{c} (B) \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix} \\ (C) \begin{bmatrix} 2 \\ 0.5 \end{bmatrix} \\ (D) \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} \\ (E) \begin{bmatrix} 2.5 \\ 3.0 \\ 3.5 \end{bmatrix} \\ (F) 2 \\ (G) \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix} \end{array}$

(A) 3.5

- (f) $f_{\mathbf{w},b}(3) =$ (A) (B) (C) (D) (E) (F) (G) A: must be scalar and 2 is taken by b
- (g) intercept = (A) (B) (C) (D) (E) (F) (G)F: first element of w

(My answers above are mostly from considering dimensions. With a little more work, the matrix arithmetic can be done to find the answers.) 9

- 6. Here are some questions on support vector machines.
 - (a) Suppose we have a soft-margin SVM for which $\mathbf{w} = (2,3)$ and b = -1. How does the SVM classify $(\mathbf{x} = (1,1), y = 1)$?

ANSWER:

 $\mathbf{wx} + b = (2,3) \cdot (1,1) + (-1) = 4 > 0$, so $\hat{y} = 1$.

- (b) Suppose we have some training data {(x_i, y_i)}^N_{i=1} (where x_i is 2D) in matrices X and y. We have plotted the data with y = -1 examples red and y = 1 examples blue. Which line of code gives the best model for predicting new examples? For each question, write the best answer from among these lines labeled "A" thorugh "H".
 - A: clf = svm.SVC(kernel='linear', C=1); clf.fit(X, y)
 - B: clf = svm.SVC(kernel='linear', C=1000); clf.fit(X, y)
 - C: clf = svm.SVC(kernel="rbf", C=1, gamma=1); clf.fit(X, y)
 - D: clf = svm.SVC(kernel="rbf", C=1, gamma=10); clf.fit(X, y)
 - E: clf = svm.SVC(kernel="euclidean", C=1, gamma=2); clf.fit(X, y)
 - F: clf = svm.SVC(kernel="euclidean", C=1000, gamma=2); clf.fit(X, y)

```
G: clf = svm.SVC(kernel="gini", C=1); clf.fit(X, y)
```

- H: clf = svm.SVC(kernel="gini", C=1000); clf.fit(X, y)
- i. (A)(B)(C)(D)(E)(F)(G)(H)

The red points are scattered between $x_1 = 0$ and $x_1 = 2\pi$ and roughly along $x_2 = \sin x_1$, a wave. The blue points are scattered over the same x_1 interval and roughly along $x_2 = \sin x_1 + 1$, a wave 1 higher than the first wave. ANSWER: C

ii. (A)(B)(C)(D)(E)(F)(G)(H)

The data consist of two clouds of points, one red and one blue, that are linearlyseparable except for a few outliers of each color.

```
ANSWER: A
```

iii. (A) (B) (C) (D) (E) (F) (G) (H) The data are mixed red and blue points scattered randomly in the disk $x_1^2 + x_2^2 \le 1$. ANSWER: D

- 7. Mark each statement True or False.
 - (a) In linear regression, a reasonable alternative to the cost function mean squared error =

$$\frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) - y_i]^2 \text{ is sum of squared error} = \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) - y_i]^2.$$

$$\bigcirc \text{ True ANSWER:} \bullet$$

The two functions will have the same minimum, as they differ only by the constant $\frac{1}{N}$.

- O False
- (b) For the soft-margin SVM with decision boundary $\mathbf{wx} + b = 0$ where $\mathbf{w} = (1, 2)$ and b = 3, the example $(\mathbf{x}, y) = ((4, 5), -1)$ has hinge loss 18.
 - \bigcirc True ANSWER: \bigcirc

Hinge loss is $\max(0, 1 - y_i(\mathbf{wx} + b)) = \max(0, 1 - (-1)((1 \cdot 4 + 2 \cdot 5) + 3)) = 18.$ \bigcirc False

- (c) For training data $\{(\mathbf{x}, y)\}$ such that $\mathbf{x}_i \neq \mathbf{x}_j$ for all *i* and *j*, we can build a 3NN model that classifies the training examples without error.
 - O True
 - \bigcirc False ANSWER:

For example, if there are only N = 3 examples with $y_1 = 0, y_2 = 0, y_3 = 1$, all three examples will be classified as the majority y value, namely 0.

- (d) If we train a hard-margin linear SVM on linearly separable data, then discard training examples which are support vectors, and then train a new SVM on the remaining examples, the first SVM will have a wider "road" than the second.
 - O True
 - \bigcirc False ANSWER: \bullet

The first "road" will be narrower than the second.

- (e) A linear SVM with decision boundary $(1, 2, 2) \cdot \mathbf{x} 2 = 0$ has a smaller margin between +1 and -1 support vectors than one with boundary $(1, 4, 8) \cdot \mathbf{x} + 3 = 0$.
 - O True
 - \bigcirc False ANSWER: \bigcirc

The margin for the first SVM is $\frac{2}{||\mathbf{w}||} = \frac{2}{\sqrt{1^2+2^2+2^2}} = \frac{2}{3}$, while the margin for the second is $\frac{2}{||\mathbf{w}||} = \frac{2}{\sqrt{1^2+4^2+8^2}} = \frac{2}{9}$.

(f) Every decision tree regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.

○ True ANSWER: ●

○ False

(g) Every k-NN regression function is a step function.

Hint: A step function is a function that is constant over each of one or more intervals.

 \bigcirc True ANSWER: \bigcirc

 \bigcirc False

(h) In logistic regression, we use the natural log function to facilitate finding a closed-form expression for the coefficients \mathbf{w} and b in terms of the data.

○ True

○ False ANSWER: ●
 We do not have such a closed-form expression.

- 8. Consider a logistic regression model with $\mathbf{w} = (1, 2)$ and b = 0.
 - (a) From the logistic regression model represented in the figure, estimate the likelihood of an NFL field goal kicker making two field goals in a row, one from 20 yards and one from 60. We may suppose these attempts are independent and make other reasonable simplifying assumptions.

$$L_{\mathbf{w},b} = \prod_{i=1}^{N} l_{\mathbf{w},b}(\mathbf{x}_{i}, y_{i}) = P(y = 1 | x = 20) \cdot P(y = 1 | x = 60) \approx 1 \cdot 0.4 = 0.4.$$

Any answer in [0.35, 0.45] is ok too.

- (b) In calculating the coefficients for a logistic regression model, why do we minimize negative log likelihood instead of maximizing likelihood? Mark each statement as a true or false.
 - i. A product of probabilities can overflow in fixed-precision computer arithmetic.
 - True
 - \bigcirc False ANSWER: lacksquare
 - ii. A product of probabilities can underflow in fixed-precision computer arithmetic.
 - \bigcirc True ANSWER: \bigcirc
 - False
 - iii. The natural log of a product is naturally expressed as a sum, and differentiating a sum is easier than differentiating a product.
 - True ANSWER: ●
 - False

- iv. The natural log is strictly increasing, so maximizing the likelihood is the same as minimizing the negative log likelihood.
 - True ANSWER: ●
 - \bigcirc False