(1 point for easily legible writing on this cover sheet.)

NetID: _____ (mine is jgillett from jgillett@wisc.edu)

Last name:

First name:

First name and last name: ______ (I am asking for these separately above and together here to use with optical character recognition software.)

Mark your lecture with "X":

_____ TuTh 1:00-2:15

STAT 451 Midterm Exam Instructions:

- 1. Please sit in columns with two empty seats separating columns.
- 2. Do not open the exam until I say "go."
- 3. Put away everything except a pencil or pen, a calculator, and your one-page (two sides) notes sheet.
- 4. Show your work. Correct answers without at least a minimal version of the work normally required may receive no credit.
- 5. The exam ends when I call time. If you continue writing after I call time, you risk a penalty. (The alternative, that you get more time than your peers, is unfair.)
- 6. If a question is ambiguous, resolve the ambiguity in writing. We will consider grading accordingly. e.g.
 - I think "average" refers to the population mean μ (not the sample mean \bar{X}).
 - I think "linear regression" refers to OLS, not ridge or lasso.

Question	Points	Earned
Q0 (cover)	1	
Q1	10	
Q2	5	
Q3	15	
Q4	15	
Q5	10	
Q6	12	
Q7	10	
Q8	22	
Total	100	

- 1. Consider a logistic regression model with $\mathbf{w} = (1, 2)$ and b = 0.
 - (a) Use the model to estimate probability that y is 1, given that \mathbf{x} is (-3, 1)).
 - (b) In calculating the coefficients for a logistic regression model, why do we minimize negative log likelihood instead of maximizing likelihood? Mark each statement as a true or false reason by circling the appropriate choice.
 - i. TRUE / FALSE A product of probabilities can overflow in fixed-precision computer arithmetic.
 - ii. TRUE / FALSE A product of probabilities can underflow in fixed-precision computer arithmetic.
 - iii. TRUE / FALSE The natural log of a product is naturally expressed as a sum, and differentiating a sum is easier than differentiating a product.
 - iv. TRUE / FALSE The natural log is strictly increasing, so maximizing the likelihood is the same as minimizing the negative log likelihood.
 - v. TRUE / FALSE Using the natural log facilitates finding a closed-form expression for the coefficients in terms of the data.
- 2. Consider applying gradient descent with step size $\alpha = 0.1$ to find the **x** that minimizes the function $f(\mathbf{x}) = f(x^{(1)}, x^{(2)}) = (x^{(1)} + 1)^2 + (x^{(2)} 2)^2$ starting from $\mathbf{x}_0 = (1, 2)$. Find the value \mathbf{x}_1 after one iteration.

- 3. Suppose we have a soft-margin SVM for which $\mathbf{w} = (-6, 3)$ and b = 5. Consider the example $(\mathbf{x} = (2, 1), y = -1)$.
 - (a) How does the SVM classify \mathbf{x} ?
 - (b) Does (\mathbf{x}, y) satisfy the SVM constraint? (Answer Yes or No.)
 - (c) What is the hinge loss associated with (\mathbf{x}, y) ?

- 4. Here are some questions about decision trees.
 - (a) Consider a classification decision tree node containing the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = (x_1, x_2, x_3)$:

S				
	x_1	x_2	x_3	y
	2	11	12	0
	1	6 8	14	0
	0	8	17	1
	3	10	15	0
	4	7	16	1
	5	9	13	0

i. The entropy of this node in bits is _____.

ii. The (feature, threshold) pair (j, t) that yields the best split for this node is feature $j = ____$ and threshold $t = ____$.

(b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once into two leaves) made from the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = x_1$:

S	
x_1	y
0	10
1	11
2	12
3	13
4	23
5	24
XX71	+1-

What value does this tree predict for $x_1 = 4.5$?

- 5. Here are questions about feature engineering.
 - (a) Consider the data 0, 5, 5, 5, 5, which have these summary statistics:
 - $\bullet \ \mathrm{minimum} \ 0$
 - mean 4
 - $\bullet \mod 5$
 - maximum 5
 - (population) standard deviation 2

Do standardization rescaling on feature \mathbf{x} :

Do brandar andarion roboa		
(input)	(output)	
x	x_rescaled	
0		
5		
5		
0		
5		
5		

(b) Use one-hot encoding to transform the categorical feature activity into binary features with reasonable names.

(input)	(output)
activity	
swim	
bike	
run	
1 •1	
bike	

6. Consider 3-NN (three nearest neighbors) with the negative cosine similarity distance.

~)	i ma une	anou	
	x	y	Distance from ${\bf z}$ to ${\bf x}$
	(-4,3)	1	
	(0, 1)	0	
	(1, 0)	0	
	(6,8)	1	

(a) Find the distance from $\mathbf{z} = (3, 4)$ to each of the other points \mathbf{x} : $\frac{\mathbf{x} \qquad y \qquad \text{Distance from } \mathbf{z} \text{ to } \mathbf{x}}{(-4, 3) \qquad 1}$

Hint: Notice the "negative" in "negative cosine similarity."

(b) How does 3-NN classifiy \mathbf{z} ?

(c) What y value does 3-NN regression predict for \mathbf{z} ?

- 7. In linear regression we minimize the mean squared error (MSE).
 - (a) Find the MSE for the points (0,0) and (1,2) relative to the line $\hat{y} = f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}\mathbf{x} + b$, where $\mathbf{w} = 2$ and b = 3.

(b) For the best-fitting line for these data, $\mathbf{w} = \underline{\qquad}$ and $b = \underline{\qquad}$.

- 8. Mark each statement true or false by circling the appropriate choice.
 - (a) TRUE / FALSE A support vector machine on 2D **x** with decision boundary $(3, 4) \cdot \mathbf{x} + 5 = 0$ has a smaller margin between +1 and -1 support vectors than one with boundary $(5, 12) \cdot \mathbf{x} + 13 = 0$.
 - (b) TRUE / FALSE Logistic regression sends an example **x** through a linear function to get a real number, which it sends through an exponential function to get a positive number, which it sends through a logistic function to predict a probability between 0 and 1. (Then it optionally compares that probability to a threshold to predict $\hat{y} = 0$ or $\hat{y} = 1$.)
 - (c) TRUE / FALSE The linear regression model is not sensitive to the signs of labels $\{y_i\}$ because it minimizes mean *squared* error.
 - (d) TRUE / FALSE A decision tree node containing the examples $\{(\mathbf{x}, y)\} = \{((1,2),0), ((3,4),1), ((5,6),0)\}$ has lower entropy than the one containing the examples $\{((7,8),0), (9,10), 1)\}.$
 - (e) TRUE / FALSE Weighted kNN evaluates a new example **x** using **x**'s k nearest neighbors weighted with weights proportional to the corresponding distances to **x**.
 - (f) TRUE / FALSE If we train an SVM on linearly separable data, then discard all support vectors, and then train a new SVM on the remaining examples, the first SVM will have a larger margin between +1 and −1 examples than the second.
 - (g) TRUE / FALSE The hinge loss function of a soft-margin SVM gives a nonzero value for any **x** such that $\mathbf{wx} + b \ge 0$.
 - (h) TRUE / FALSE If stochastic gradient descent (SGD) and gradient descent (GD) are both run in the same amount of time on a well-behaved function of some parameters over a large N of training examples each having a small D of features, SGD can use more iterations with a smaller learning rate α than GD.
 - (i) TRUE / FALSE 1 + 1 = 2
 - (j) TRUE / FALSE Ridge regression tends to set most coefficients to zero.
 - (k) TRUE / FALSE Training data are used to set parameters, validation data are used to choose hyperparameter settings and/or models, and test data are used to evaluate the chosen model.