(1 point for easily legible writing on this cover sheet.)

NetID: _____ (mine is jgillett from jgillett@wisc.edu)

Last name:

First name:

First name and last name: ______ (I am asking for these separately above and together here to use with optical character recognition software.)

Mark your lecture with "X":

_____ TuTh 1:00-2:15

STAT 451 Midterm Exam Instructions:

- 1. Please sit in columns with two empty seats separating columns.
- 2. Do not open the exam until I say "go."
- 3. Put away everything except a pencil or pen, a calculator, and your one-page (two sides) notes sheet.
- 4. Show your work. Correct answers without at least a minimal version of the work normally required may receive no credit.
- 5. The exam ends when I call time. If you continue writing after I call time, you risk a penalty. (The alternative, that you get more time than your peers, is unfair.)
- 6. If a question is ambiguous, resolve the ambiguity in writing. We will consider grading accordingly. e.g.
 - I think "average" refers to the population mean μ (not the sample mean \bar{X}).
 - I think "linear regression" refers to OLS, not ridge or lasso.

Question	Points	Earned
Q0 (cover)	1	
Q1	10	
Q2	5	
Q3	15	
Q4	15	
Q5	10	
Q6	12	
Q7	10	
Q8	22	
Total	100	

- 1. Consider a logistic regression model with $\mathbf{w} = (1, 2)$ and b = 0.
 - (a) Use the model to estimate probability that y is 1, given that \mathbf{x} is (-3, 1)). ANSWER:

$$\hat{P}(y=1|\mathbf{x}) = \frac{1}{1+e^{-(\mathbf{w}\mathbf{x}+b)}} = \frac{1}{1+e^{-((1,2)\cdot(-3,1)+0)}} = \frac{1}{1+e^1} \approx 0.269.$$

- (b) In calculating the coefficients for a logistic regression model, why do we minimize negative log likelihood instead of maximizing likelihood? Mark each statement as a true or false reason by circling the appropriate choice.
 - i. TRUE / FALSE FALSE A product of probabilities can overflow in fixed-precision computer arithmetic.
 - ii. TRUE / FALSE TRUE A product of probabilities can underflow in fixed-precision computer arithmetic.
 - iii. TRUE / FALSE TRUE The natural log of a product is naturally expressed as a sum, and differentiating a sum is easier than differentiating a product.
 - iv. TRUE / FALSE TRUE The natural log is strictly increasing, so maximizing the likelihood is the same as minimizing the negative log likelihood.
 - v. TRUE / FALSE FALSE Using the natural log facilitates finding a closed-form expression for the coefficients in terms of the data.
- 2. Consider applying gradient descent with step size $\alpha = 0.1$ to find the **x** that minimizes the function $f(\mathbf{x}) = f(x^{(1)}, x^{(2)}) = (x^{(1)} + 1)^2 + (x^{(2)} 2)^2$ starting from $\mathbf{x}_0 = (1, 2)$. Find the value \mathbf{x}_1 after one iteration.

ANSWER:

 $\nabla f(\mathbf{x}) = (2(x^{(1)}+1), 2(x^{(2)}-2)), \text{ which is } (4,0) \text{ at } \mathbf{x} = (1,2).$ Move to $\mathbf{x}_1 = \mathbf{x}_0 - \alpha \nabla f(\mathbf{x}_0) = (1,2) - 0.1(4,0) = (0.6,2).$

- 3. Suppose we have a soft-margin SVM for which $\mathbf{w} = (-6, 3)$ and b = 5. Consider the example $(\mathbf{x} = (2, 1), y = -1)$.
 - (a) How does the SVM classify \mathbf{x} ? ANSWER: $\mathbf{w}\mathbf{x} + b = (-6, 3) \cdot (2, 1) + 5 = -4 < 0$, so $\hat{y} = -1$.
 - (b) Does (\mathbf{x}, y) satisfy the SVM constraint? (Answer Yes or No.) ANSWER:

Yes. It satisfies the constraint $\iff y(\mathbf{wx} + b) \ge 1 \iff (-1)((-6,3) \cdot (2,1) + 5) \ge 1 \iff 14 \ge 1$, which is true.

(c) What is the hinge loss associated with (\mathbf{x}, y) ? ANSWER:

It satisfies the constraint, so the hinge loss is 0.

Or, ignoring the constraint, the hinge loss is $\max(0, 1 - y(\mathbf{wx} + b)) = \max(0, 1 - (-1)((-6, 3) \cdot (2, 1) + 5)) = \max(0, -3) = 0.$

- 4. Here are some questions about decision trees.
 - (a) Consider a classification decision tree node containing the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = (x_1, x_2, x_3)$:

S				
x_1	x_2	x_3	y	
2	11	12	0	
1	6	14	0	
0	8	17	1	
3	10	15	0	
4	7	16	1	
5	9	13	0	

i. The entropy of this node in bits is _____. ANSWER: The node's y values are 0, 0, 1, 0, 1, 0, so $f_{ID3}(S) = \frac{1}{|S|} \sum_{(\mathbf{x},y) \in S} y = \frac{1}{6}(0+0+1+0+1+0) = \frac{1}{3}.$ $H(S) = \frac{1}{3}(-\log_2(\frac{1}{3}) - \frac{2}{3}(-\log_2(\frac{2}{3})) \approx -\frac{1}{3}(-1.585) - \frac{2}{3}(-0.585) \approx 0.918$

- ii. The (feature, threshold) pair (j,t) that yields the best split for this node is feature $j = _$ _____ and threshold $t = _$ ____. ANSWER: Using feature j = 3 and threshold t = 15.5 (or any $t \in [15, 16)$) splits S into $S_{-} = \{(\mathbf{x}, y) \in S | x^{(j)} \leq t\} = \{0, 0, 0, 0\}$ and its complement $S_{+} = \{(\mathbf{x}, y) \in S | x^{(j)} > t\} = \{1, 1\}$, each of which has entropy 0.
- (b) Consider a regression decision tree with max_depth=1 (that is, the root node is split once into two leaves) made from the set of examples $S = \{(\mathbf{x}, y)\}$ where $\mathbf{x} = x_1$:

S		
x_1	y	
0	10	
1	11	
2	12	
3	13	
4	23	
5	24	
Wha	t valu	

What value does this tree predict for $x_1 = 4.5$?

ANSWER: 12.5

The best split uses feature j = 1 and threshold t = 3.5, yielding a left subtree containing the first four examples and a right subtree containing the last two examples. Making a prediction with $x_1 = 4.5$ would use the right subtree. Its average y is 23.5, so the tree would predict $\hat{y} = 23.5$.

- 5. Here are questions about feature engineering.
 - (a) Consider the data 0, 5, 5, 5, 5, which have these summary statistics:
 - $\bullet \ \mathrm{minimum} \ 0$
 - mean 4
 - $\bullet \mod 5$
 - maximum 5
 - (population) standard deviation 2

Do standardization rescaling on feature \mathbf{x} :

(input)	(output)
х	x_rescaled
0	ANSWER: -2
5	ANSWER: $\frac{1}{2}$

Or, if we mistakenly use the sample standard deviation $s = \sqrt{5} \approx 2.24$ instead of the population standard deviation $\sigma = 2$, we get this answer (which should receive only a tiny grading penalty, like 0.25 point):

- x x_rescaled
- 0 -1.79
- 5 0.45
- 5 0.45
- 5 0.45
- 5 0.45

with reasona	able nar	$\mathrm{nes.}$	
(input)			(outpu
activity			
swim			
bike			
run			
1.:1			
ыке			
ANSWER:			
(input)	(output)		
activity	swim	bike	run
swim	1	0	0
bike	0	1	0
run	0	0	1
bike	0	1	0

(b) Use one-hot encoding to transform the categorical feature activity into binary features with reasonable names.

- 6. Consider 3-NN (three nearest neighbors) with the negative cosine similarity distance.
 - (a) Find the distance from $\mathbf{z} = (3, 4)$ to each of the other points \mathbf{x} :

x	y	Distance from ${\bf z}$ to ${\bf x}$
(-4,3)	1	ANSWER: 0
(0, 1)	0	ANSWER: -0.8
(1, 0)	0	ANSWER: -0.6
(6, 8)	1	ANSWER: -1

Hint: Notice the "negative" in "negative cosine similarity."

(b) How does 3-NN classify z?

ANSWER: 0

- (c) What y value does 3-NN regression predict for \mathbf{z} ? ANSWER: $\hat{y} = \frac{1}{3}(0+0+1) = \frac{1}{3}$
- 7. In linear regression we minimize the mean squared error (MSE).
 - (a) Find the MSE for the points (0,0) and (1,2) relative to the line $\hat{y} = f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}\mathbf{x} + b$, where $\mathbf{w} = 2$ and b = 3. ANSWER:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) - y_i]^2$$

= $\frac{1}{2} \sum_{i=1}^{2} [(2x_i + 3) - y_i]^2$
= $\frac{1}{2} \left([(2 \cdot 0 + 3) - 0]^2 + [(2 \cdot 1 + 3) - 2]^2 \right)^2$
= 9

(b) For the best-fitting line for these data, $\mathbf{w} = ___$ and $b = ___$. ANSWER:

Since there are only two points, the best line goes through the two points (without regard for the regression machinery). It has slope $\mathbf{w} = 2$ and intercept b = 0.

- 8. Mark each statement true or false by circling the appropriate choice.
 - (a) TRUE / FALSE A support vector machine on 2D \mathbf{x} with decision boundary $(3, 4) \cdot \mathbf{x} + 5 = 0$ has a smaller margin between +1 and -1 support vectors than one with boundary $(5, 12) \cdot \mathbf{x} + 13 = 0$.

ANSWER: FALSE.

The margin for the first SVM is $\frac{2}{||\mathbf{w}||} = \frac{2}{\sqrt{3^2+4^2}} = \frac{2}{5} = 0.4$, while the margin for the second is $\frac{2}{||\mathbf{w}||} = \frac{2}{\sqrt{5^2+12^2}} = \frac{2}{13} \approx 0.15$.

- (b) TRUE / FALSE Logistic regression sends an example **x** through a linear function to get a real number, which it sends through an exponential function to get a positive number, which it sends through a logistic function to predict a probability between 0 and 1. (Then it optionally compares that probability to a threshold to predict $\hat{y} = 0$ or $\hat{y} = 1$.) ANSWER: FALSE. The logistic function itself includes the exponential: $\sigma(t) = \frac{1}{1+e^{-t}}$. There is no other exponential function involved.
- (c) TRUE / FALSE The linear regression model is not sensitive to the signs of labels $\{y_i\}$ because it minimizes mean *squared* error. ANSWER: FALSE.
- (d) TRUE / FALSE A decision tree node containing the examples $\{(\mathbf{x}, y)\} = \{((1, 2), 0), ((3, 4), 1), ((5, 6), 0)\}$ has lower entropy than the one containing the examples $\{((7, 8), 0), (9, 10), 1)\}$. ANSWER: TRUE. The first has entropy $-\frac{1}{3}\log_2\frac{1}{3} - (1 - \frac{1}{3})\log_2(1 - \frac{1}{3}) \approx 0.92$, while the second has entropy 1.
- (e) TRUE / FALSE Weighted kNN evaluates a new example x using x's k nearest neighbors weighted with weights proportional to the corresponding distances to x.
 ANSWER: FALSE. The weights are inversely proportion to the distances.
- (f) TRUE / FALSE If we train an SVM on linearly separable data, then discard all support vectors, and then train a new SVM on the remaining examples, the first SVM will have a larger margin between +1 and -1 examples than the second. ANSWER: FALSE. The first will have a smaller margin than the second (unless there

ANSWER: FALSE. The first will have a smaller margin than the second (unless there are no +1 or -1 examples remaining, in which case there is no second SVM).

(g) TRUE / FALSE The hinge loss function of a soft-margin SVM gives a nonzero value for any \mathbf{x} such that $\mathbf{wx} + b \ge 0$.

ANSWER: FALSE.

It is zero when $y(\mathbf{wx} + b) \ge 1$, so with y = 1, it is zero when $\mathbf{wx} + b \ge 1$.

(h) TRUE / FALSE If stochastic gradient descent (SGD) and gradient descent (GD) are both run in the same amount of time on a well-behaved function of some parameters over a large N of training examples each having a small D of features, SGD can use more iterations with a smaller learning rate α than GD.

ANSWER: TRUE

(i) TRUE / FALSE 1 + 1 = 2

ANSWER: TRUE

(j) TRUE / FALSE Ridge regression tends to set most coefficients to zero.

ANSWER: FALSE

(Lasso regression tends to set most coefficients to zero.)

(k) TRUE / FALSE Training data are used to set parameters, validation data are used to choose hyperparameter settings and/or models, and test data are used to evaluate the chosen model.

ANSWER: TRUE