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Problem Recognition

Why is it Worth Solving?

Our Goals

To find whether an individual has had an
incidence of heart disease.

To identify which machine learning
algorithm is best for identifying heart
disease.

To determine which dataset features are

the most relevant re: predictive power



Data Description

Data Source: Kaggle

Key Variables: BMI, Age, HighBP, Stroke,
GenHlth, etc.

Response variable: kagg Ie

HeartDiseaseorAttack(Indicates
whether the individual has had a heart
disease or heart attack)

Kaggle Dataset: https://www.kaggle.com/datasets/bhaveshmisra/heart-disease-indicators/data



https://www.kaggle.com/datasets/bhaveshmisra/heart-disease-indicators/data

Predictive Modeling

Which Model is best for the Predict? (

1. K-Nearest Neighbors (KNN)

2. Logistic Regression

3. Support Vector Machine (SVM)
4. Decision Tree

5

Random Forest
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Exploratory data analysis
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Problem of Data Set

Heart Disease/Attack Prevalence
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Heavy Class Imbalance!




Solution; Pre-Modeling Data Treatment
Train-Validation-Test Split
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Due to heavy class imbalance (low incidence of heart disease), We had to perform class
balancing via oversampling

]

Original ratio of heart disease  Ratio after oversampling minority
[9.4%] [50%)]



Recall Score

K-Nearest Neighbors (KNN)
Hyperparameter: K = 19 (Find the best Recall score)
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K-Nearest Neighbors (KNN)

e Hyperparameter Grid
Search based on ‘recall’
o Optimal k=19
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Logistic Regression
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Support Vector Machine (SVM)

e Hyperparameter Grid Search
based on ‘linear kernel’

O Optlmal C=20 16000

e Results: No Heart Disease 14000
AUC: 0.27 12000
Accuracy: 0.76 10000

True label

Precision: 0.14
Recall: 0.29

8000

O O O O

6000
Heart Disease

4000

2000

No Heart Disease Heart Disease
Predicted label



Decision Tree
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Random Forest

e Hyperparameter Grid Search based on “recall ”
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Model Results

Recall Scores on Validation Data by Model
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Which is the best choice among the top 3 recall scores?



Conclusion
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Our analysis shows that logistic regression, decision tree, and random
forest models demonstrate comparable performance in our dataset.



Discussion

e Seeking the best Recall Score often leads to more false positives. Further
research is needed to balance accuracy, recall, and precision, considering
doctors' needs.

e In the further research, implementing feature selection could be beneficial.
With numerous variables, feature selection can help reduce code running

time.



