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Background

In the realm of financial services, the accurate prediction of loan approval
stands as a cornerstone for responsible lending.

This project delves into the realm of machine learning, specifically leveraging
the Loan Prediction Problem Dataset. By scrutinizing applicant data
encompassing demographics, financial metrics, and credit history, our goal is
to construct a predictive model, to determine whether to approve the loan for
the applicant.

This model aims to not only streamline decision-making within financial
institutions but also foster a more nuanced understanding of risk factors,
contributing to the cultivation of responsible and informed lending practices.



Data Description

Our dataset comprises several key variables:

Loan_ID: Unique identifier for each loan application.

Gender: Gender of the applicant (Male, Female).

Married: Marital status of the applicant (Married, Not Married).

Dependents: Number of dependents (0, 1, 2, 3+).

Education: Educational background of the applicant (Graduate, Not Graduate).
Self_Employed: Whether the applicant is self-employed (Self Employed, Not Self Employed).
ApplicantIncome: Income of the applicant (in dollars).

CoapplicantIncome: Income of the co-applicant (in dollars).

LoanAmount: Amount of the loan requested (in thousands of dollars).

Loan_Amount_Term: Term of the loan (in months).

Credit_History: Credit history of the applicant (1 for good credit history, 0 for otherwise).
Property_Area: Area where the property is located (Rural, Urban, Semi-Urban).
Loan_Status: The target variable indicating loan approval status (Y for approved, N for denied).



Dataset

The training data has 614 rows and 13 columns.
Training Data:

Loan_ID Gender Married Dependents Education Self_Employed Applicantincome Coapplicantincome LoanAmount Loan_Amount_Term Credit_History Property_Area Loan_Status

LP001002 Male No Graduate No 5849 0.0 NaN 360.0 1.0 Urban Y,
LP001003 Male Yes Graduate No 4583 1508.0 128.0 360.0 1.0 Rural N
LP001005 Male Yes Graduate Yes 3000 0.0 66.0 360.0 1.0 Urban Y
LP001006 Male Yes Not Graduate No 2583 2358.0 120.0 360.0 1.0 Urban i
LP001008 Male No Graduate No 6000 0.0 141.0 360.0 1.0 Urban &




Exploratory Data Analysis
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Loan Status

Loan Status

Scatter Plot of Applicantincome vs Loan Status

Scatter Plot of Coapplicantincome vs Loan Status
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Frequency

Distribution of Loan Amount Term
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Preparation before modeling



Preprocessing Data

1. Convert categorical variables and non-standard numerical values to numeric values
#For simplicity, we use Label Encoding for categorical variables

2. Impute missing values
# For categorical columns, fill missing values with the mode
# For numerical columns, fill missing values with the median

3. Remove outliers
# Here, we use a simple method of removing values that are beyond 3 standard
deviations from the mean

Gender Married Dependents Education Self_Employed Applicantincome Coapplicantincome LoanAmount Loan_Amount_Term Credit_History Property_Area
(0X0] (0] (0] 5849 (0X0] 128.0 360.0 1.0 2
1.0 4583 1508.0 128.0 360.0 1.0

0.0 2583 2358.0 120.0 360.0 1.0

0
0.0 3000 0.0 66.0 360.0 1.0 2
7
0.0 6000 0.0 141.0 360.0 1.0 2

Loan_Status
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Principal Components

PC1

PCA

PC2

PC3

Explained variance ratio is set to 95%
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PCA Explained Variance Ratio

PC Explained Variance Ratio
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Models




SVM

Classifier Parameters

SVM {'C"[0.01, 1, 100]}

KNN {'n_neighbors': [1, 2, 3, 4]}

Logistic Regression {'C".10.01, 1, 100]}

Using Grid search
to find the best
model.



SVM

Model Accuracies

Classifier Parameters Accuracy Model

{'C" 0.01} ).66¢ SVC(C=0.01, random_state=42)

1 KNN {'n_neighbors": 3} 0.585 KNeighborsClassifier(n _neighbors=3)
2 Logistic Regression {C" 1} LogisticRegression(C=1, max_iter=5000)




KNN

Classifier Parameters

SVM {C':[0.01, 1, 100} Usipg Grid search
to find the best

KNN {'n_neighbors": [1, 2, 3, 4]} model.

Logistic Regression {'C".10.01, 1, 100]}



KNN

Model Accuracies

Classifier Parameters Accuracy Model

0 SVM {C:001} | 0669 SVC(C=0.01, random_state=42)
KNN {'n_neighbors": 3} 0.585 KNeighborsClassifier(n _neighbors=3)

2 Logistic Regression WWGRE L ogisticRegression(C=1, max_iter=5000)



Logistic Regression

Classifier Parameters

SVM {C':[0.01, 1, 100} Usipg Grid search
to find the best

KNN {'n_neighbors": [1, 2, 3, 4]} model.

Logistic Regression {'C".10.01, 1, 100]}



Logistic Regression

Model Accuracies

Classifier Parameters Accuracy Model

0 SVM {C" 0.01} _

1 KNN {'n_neighbors': 3} 0.585 KNeighborsClassifier(n _neighbors=3)

SVC(C=0.01, random_state=42)

2 Logistic Regression {C" 1} WWGRE L ogisticRegression(C=1, max_iter=5000)



Tue Labels

Logistic Regression

Confusion Matrix - Logistic Regression

Receiver Operating Characteristic (ROC) Curve - Logistic Regression
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Logistic Regression

Logistic Regression Coefficients and
Odds Ratios

Feature Coefficient Odds Ratio

0 Gender 0.5735

1 Married 1.6918 Compare Odds Ratio with 1

2 Dependents 1.1113

3 Education 0.5253

4 Self_Employed 0.8226 . .

S oo Education,Married,
pplicantincome ; . .

6 Coapplicantincome 1.0001 and Cl‘edlt_hIS'[OI’y

7 LoanAmount 0.9942 are mOSt Slgnlﬁcant

8 Loan_Amount _Term 0.9980 va I'i d b I es.

9 Credit_History 24.0175

10 Property Area 1.0887



Decision Tree

Training Data Set Accuracy: 1.0
Training Data F1 Score 1.0

Validation Mean F1 Score: 0.704
Validation Mean Accuracy: 0.739



Decision Tree

Tuning Max_Depth

Metrics
Training Accuracy
Validation Accuracy
Training F1
Validation F1

:.-’_q'—‘\\"*”‘*'*“~v—-r—a——*-~§‘//*\,,_o—**~w

1 2 3 - 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Max_Depth

Test Accuracy: 0.779
Test F1 Score: 0.858




Decision Tree
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Values

Decision Tree

Tuning Min_Simples_leaf

0.9 A

0.8 1

0.7 1

0.6

0.5 A

0.4

Metrics
Training Accuracy
Validation Accuracy
Training F1
Validation F1

T T T T T T T T T T T T T T T T T T T T T T T T T T
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79
Min_Samples_leaf

Test Accuracy: 0.796
Test F1 Score: 0.869




Decision Tree

Test Accuracy: 0.677
Test F1 Score: 0.771

Tuning Max_Depth

Test Accuracy: 0.779
Test F1 Score: 0.858

Tuning Min_Simples_Lleaf

Test Accuracy: 0.796
Test F1 Score: 0.869




Random Forest

"n_estimators’ : [20, 30, 50], | |
'max_depth’ : [None, 10, 20], Using Grid

y . ) search to find
min_samples split’: [2, 5, 10], the best model
'min_samples leaf : [10, 20, 35] .



Random Forest

Best Parameters: {'max_depth’: None, 'min_samples_leaf’: 10, 'min_samples_split’: 2, ’'n_estimators’ : 20}
Accuracy on Test Set: 0.771




Random Forest

Random Forest Feature Importance
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Random Forest

Confusion Matrix

Predicted Labels
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Receiver Operating Characteristic (ROC) Curve
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Gradient Boosting

Gradient Boosting Classifier - Feature Importance
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Gradient Boosting

Confusion Matrix
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Gradient Boosting

Accuracy of Gradient Boosting on Test Set: 0.737




Best Model

Model Accuracy on test dataset
SVM 0.669
KNN 0.585
Logistic Regression 0.763
Decision Tree 0.796
Random Forest 0.771
Gradient Boosting 0.737




Summary & Conclusion

- Decision tree performs the best when predicting the approval
or denial of a loan application

- Important features differ between models:
- Random Forest & Gradient Boosting: Credit History, Loan
Amount, Applicant & Co Applicant Income
- Logistic Regression: Credit History, Education, Marital Status

- Credit History matters



Future work based on weakness and
limitations

Enhancing Data Quality:

Data Enrichment: Incorporate more diverse and comprehensive
data sources to capture a wider range of variables that might
affect loan approval decisions.

Handling Missing Data: Explore advanced imputation
techniques or data augmentation methods to better handle
missing data without introducing significant bias.



Future work based on weakness and
limitations

Advanced Modeling Techniques:

Ensemble Methods: Further explore ensemble methods that
combine the predictions from multiple models to improve
accuracy and robustness.



Future work based on weakness and
limitations

Model Validation and Testing:

Cross-Validation with Diverse Datasets: Test the model on
various datasets to ensure its generalizability and robustness.

Real-World Testing: Pilot the model in a real-world setting to
observe its performance and gather feedback.
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