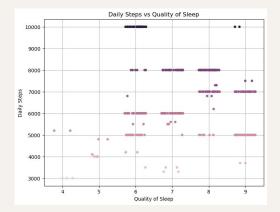
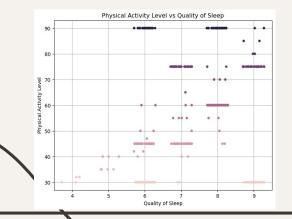
Predicting Sleep Quality Based on Lifestyle Factors

By: Leah Schneck, Christina Jurotich, Libby Abts, Niyati Vijay & Tanisha Anand Raaj STAT 451: Project 20

Sleep Health and Lifestyle Dataset

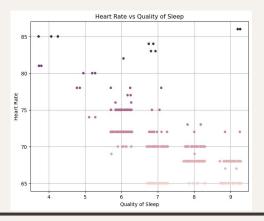
- 400 rows x 13 columns; 400 observations.
- <u>https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset/data</u>


	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate	Daily Steps	Sleep Disorder
Person ID												
1	Male	27	Software Engineer	6.1	0.0	42	6	Overweight	126/83	77	4200	None
2	Male	28	Doctor	6.2	0.0	60	8	Normal	125/80	75	10000	None
3	Male	28	Doctor	6.2	0.0	60	8	Normal	125/80	75	10000	None
4	Male	28	Sales Representative	5.9	0.0	30	8	Obese	140/90	85	3000	Sleep Apnea
5	Male	28	Sales Representative	5.9	0.0	30	8	Obese	140/90	85	3000	Sleep Apnea
6	Male	28	Software Engineer	5.9	0.0	30	8	Obese	140/90	85	3000	Insomnia
7	Male	29	Teacher	6.3	0.0	40	7	Obese	140/90	82	3500	Insomnia
8	Male	29	Doctor	7.8	0.0	75	6	Normal	120/80	70	8000	None
9	Male	29	Doctor	7.8	0.0	75	6	Normal	120/80	70	8000	None
10	Male	29	Doctor	7.8	0.0	75	6	Normal	120/80	70	8000	None

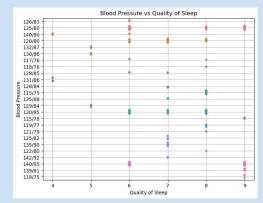

Questions of Interest?

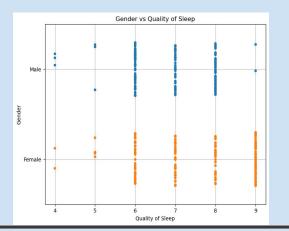
- Can we predict sleep quality based on other lifestyle factors?
- Which lifestyle factors are the most important for predicting sleep quality?
- Which models are the best predictors?

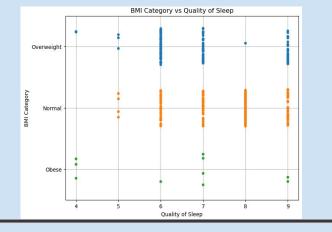


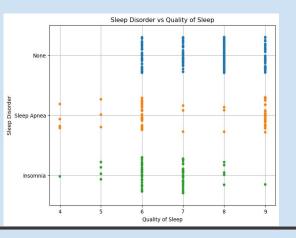

Data Visualization – Numerical Variables

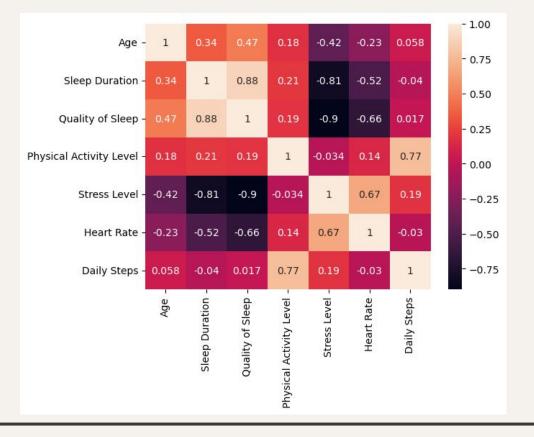


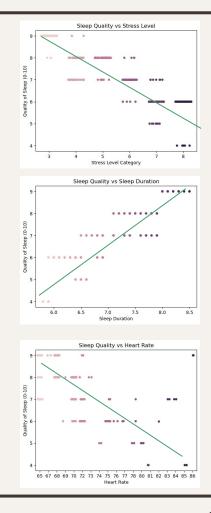






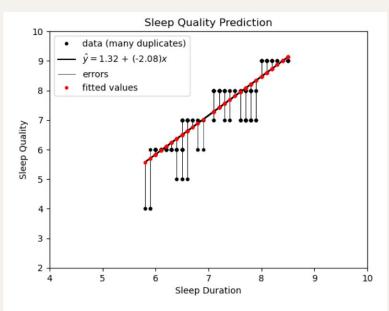

Data Visualization – Categorical Variables

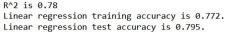


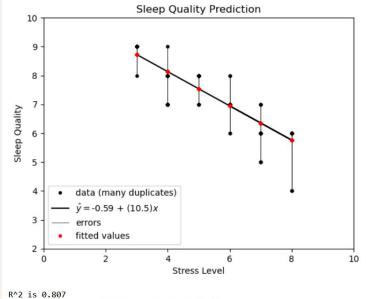




Proposed Model: Linear Regression




Linear Regression: Feature Permutation Importance


Simple Linear Regression

Sleep Quality vs Sleep Duration

Sleep Quality vs Stress Level

Linear regression training accuracy is 0.791. Linear regression test accuracy is 0.84.

Multiple Linear Regression

Predicting 'Sleep Quality' based on factors 'Stress Level' and 'Sleep Duration'.

Linear regression training accuracy is 0.874. Linear regression test accuracy is 0.884. Linear regresstion slope is -0.346

Linear Regression Conclusions

• Simple linear regression

- Accuracy of 0.795 when using Sleep Duration to predict sleep quality.
- Accuracy of 0.84 when using Stress Level to predict sleep quality.

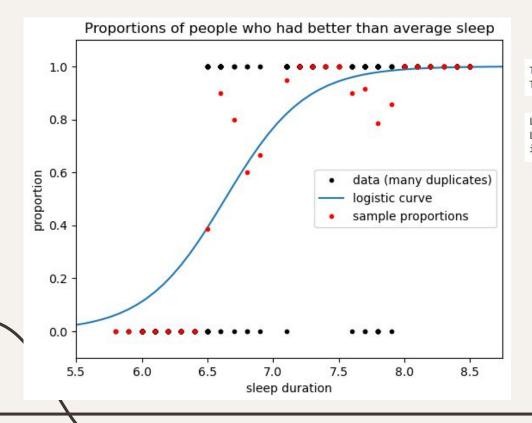
• Multiple Linear Regression

• Sleep Duration + Stress Level = 0.88

Boundless model

- Can predict sleep qualities outside of the specified range (0-10).
- Sleep quality for stress level 2 and sleep duration 13hr is 12.6.
 Sleep quality for stress level 3 and sleep duration 18hr is 15.8.
 Sleep quality for stress level 7 and sleep duration 2hr is 3.15.
- To avoid this, we will try modeling sleep quality with logistic regression.

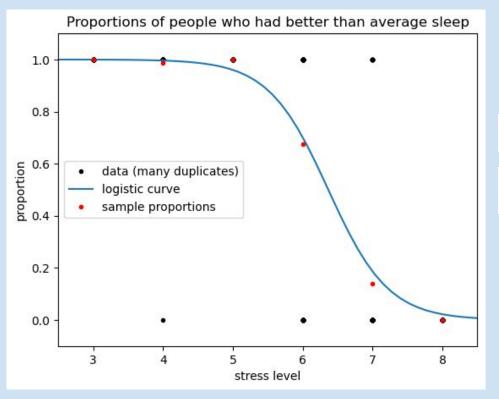
Updated Model: Logistic Regression


• Selected features:

- Sleep duration
- Stress level

• Methods:

- Grid search to determine best parameters
- Train_test_split to train on training data and test accuracy on testing data using the same parameters from linear regression
- Changing quality of sleep rating to 1 (better than average quality of sleep) or 0 (worse than average quality of sleep)


Logistic Regression: Sleep Duration vs Quality of Sleep

The best accuracy score on the validation data is: 0.912 This means that the best parameter is {'C': 1, 'max_iter': 5000}

Logistic regression training accuracy for sleep duration is 0.874. Logistic regression test accuracy for sleep duration is 0.912. intercept=[-21.65839429], slope=[3.26427132]

Logistic Regression: Stress Level vs Quality of Sleep

The best accuracy score on the validation data is: 0.947 This means that the best parameter is {'C': 1, 'max iter': 5000}

Logistic regression training accuracy for stress level is 0.935. Logistic regression test accuracy for stress level is 0.947. intercept=[14.81876522], slope=[-2.32815118]

Logistic Regression Conclusions

- Logistic regression improved prediction accuracy compared to linear regression
 - 0.88 → 0.95!
- Using stress level to predict sleep quality yielded a better model than using sleep duration.
 - Accuracy 0.912 → 0.947
- Can we improve this accuracy further with a decision tree model?

Updated Model : Decision Tree Classification Stress Level <= 6.5 gini = 0.756 samples = 261 value = [3, 5, 68, 57, 80, 48] class = 4leep Duration <= 6.45 Sleep Duration <= 7.95 gini = 0.658 gini = 0.312 samples = 182 samples = 79 value = [0, 0, 3, 51, 80, 48] value = [3, 5, 65, 6, 0, 0] class = 4class = 2 Sleep Duration <= 7.0 Heart Rate <= 73.0 Heart Rate <= 76.5 gini = 0.0 gini = 0.498 gini = 0.632 gini = 0.126 samples = 48 lue = [0, 0, 0, 0, 0, 48 samples = 134 samples = 60 samples = 19 value = [0, 0, 3, 51, 80, 0] alue = [3, 1, 56, 0, 0, 0 alue = [0, 4, 9, 6, 0, 0] class = 5 class = 4class = 2class = 2 Sleep Duration <= 6.55 Sleep Duration <= 6.7 Stress Level <= 5.5 Sleep Duration $\leq = 6.1$ gini = 0.377 gini = 0.0 gini = 0.198 gini = 0.56 gini = 0.486 gini = 0.571 samples = 55 samples = 27 samples = 107 samples = 5samples = 12 samples = 7alue = [0, 0, 55, 0, 0, 1 alue = [0, 0, 3, 24, 0, 0] alue = [0, 0, 0, 27, 80, 0] value = [3, 1, 1, 0, 0, 0] value = [0, 0, 7, 5, 0, value = [0, 4, 2, 1, 0, 0 class = 2class = 3 class = 4class = 0class = 2class = 1Heart Rate <= 72.5 Heart Rate <= 80.0 Heart Rate <= 70.5 gini = 0.375 gini = 0.0 gini = 0.444 gini = 0.0 gini = 0.0 gini = 0.0 gini = 0.049 gini = 0.5 gini = 0.375 gini = 0.191 samples = 3 samples = 24samples = 3samples = 8 samples = 4samples = 3samples = 2 samples = 28 samples = 4alue = [0, 0, 3, 0, 0, lue = [0, 0, 0, 24, 0, 0 alue = [3, 0, 0, 0, 0, 0] value = [0, 0, 6, 2, 0, 0] alue = [0, 4, 0, 0, 0, 0] value = [0, 0, 2, 1, 0, 0] ue = [0, 0, 0, 2, 77, 0] alue = [0, 0, 0, 25, 3, 0] value = [0, 1, 1, 0, 0, value = [0, 0, 1, 3, 0, class = 2class = 3class = 0class = 2class = 1class = 2 class = 4class = 3 class = 1class = 3 ep Duration <= 7.45 gini = 0.0 gini = 0.0gini = 0.0 qini = 0.1qini = 0.0gini = 0.074samples = 2 samples = 1 samples = 1 samples = 1 samples = 3 alue = [0, 0, 0, 3, 0, 0 samples = 26 alue = [0, 0, 0, 2, 0, 0 value = [0, 1, 0, 0, 0, 0] alue = [0, 0, 1, 0, 0, 0] ue = [0, 0, 1, 0, 0, 0 alue = [0, 0, 0, 25, 1, 0 class = 4class = 3 class = 4class = 1class = 2class = 2class = 3 class = 3 gini = 0.0 gini = 0.375 samples = 22 samples = 4lue = [0, 0, 0, 22, 0, 0 Training Accuracy is: 98.85% alue = [0, 0, 0, 3, 1, 0] class = 3 class = 3Test Accuracy is: 99.12% gini = 0.0 gini = 0.0 samples = 3 alue = 10.0.0.3.0.0 class = 3 class = 4

Decision Tree Classification Reasons

- Unlike Linear and logistic regression, decision tree can map more complex relationships
- Less sensitive to outliers since splitting is based on distribution of data not the magnitude
- Naturally accounts for interactions between variables through branching

Decision Tree Conclusions

- Decision tree improved prediction accuracy compared to logistic regression
 - 0.95 → 0.99
- Relatively unstable compared to linear and logistic regression since small changes in data can alter the tree structure significantly
- So what actually is the best final model?

Comparison Between Models

	Multiple Linear Regression	Logistic Regression	Decision Tree		
Accuracy	0.88	0.95	0.99		
Predictions	Stress 2, duration 13 = 12.6 Stress 3, duration 18 = 15.8 Stress 7, duration 2 = 3.15	Sleep 13 = 1; proba = 0.9 Sleep 18 = 1; proba = 1.0 Sleep 2 = 0; proba = 2e-7 Stress 2 = 1; proba = 0.9 Stress 3 = 1; proba = 0.9	Stress 2, duration 13 = class 5 Stress 3, duration 18 = class 5 Stress 7, duration 2 = class 2		
		Stress 7 = 0; proba = 0.18			

Conclusion

- Best model option
 - Decision Tree
- Important features
 - Linear Regression
 - Stress Level
 - Logistic Regression
 - Stress Level
 - Decision Tree
 - Stress Level
- Ways to improve the model in the future
 - Cross-Validation
 - Feature Engineering

Thank You

Questions?