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Summary of topic

● There’s nothing quite like arriving at your assigned 
gate only to hear your flight has been delayed

● What if we could predict whether a given flight will 
be delayed? 

● The aim of our project is to do just that. Our cleaned 
dataset has around 58,000 observations and ten 
different features

● These include airline, departure airport, the day of 
the week the flight occurred, the length of the flight, 
and whether the flight was delayed or not.  



Methods
● We trimmed the large dataset to only include 

flights from the top 3 airports and top 4 airlines 
that represented the majority of the data

● Airports included ATL (Atlanta), ORD (Chicago), 
and DFW (Dallas/Fort Worth)

● Airlines included American, Delta, Envoy, and 
ExpressJet 

● Created dummy variables for the airline and 
departure airport columns

● We used grid search to test a variety of models 
to predict a delayed flight

● Logistic regression, decision tree classification, 
kNN, and stochastic gradient descent (SGD)



Why These Methods?

● Since the response variable was binary, we thought that trying 
SVC and logistic regression seemed reasonable

● We also chose to try using a decision tree because there were 
multiple features on which to build the tree

● kNN classification made sense to try because of how large the 
dataset actually was

● Stochastic gradient descent wasn’t in our original list of 
choices, but we followed the Scikit-learn flowchart with our 
data and it suggested using SGD as an algorithm



Support Vector Machine 
● Originally we had also included a Support Vector Classifier as a 

possible algorithm to use
● Our attempts to use it led to extremely slow (and unfinished) 

calculations
● Even using multiple cores did not speed up the process
● We reasoned that this was likely due to the fact that since X is 

10-dimensional, the SVM was trying to search for the best 
9-dimensional hyperplane for ~58,000 observations (which 
would understandably take a very long time)

● After numerous attempts using smaller and smaller subsets of 
the original data, we decided to not use SVM as an algorithm



Additional Points of Interest
● In the uncleaned dataset, 1 is the value of the response variable 

around 44.54% of the time
● In our cleaned dataset, 1 is the value of the response variable 

around 44.4% of the time
● We ideally want an algorithm that achieves a score of at least 

0.444 on the validation dataset
● The parameter values we chose for GridSearch are as follows:

○ Logistic Regression: penalty = ‘l2’, max_iter = 5000, C = {0.01, 1, 100}
○ kNN: n_neighbors = {5, 10, 15}, metic = {‘euclidean’, ‘manhattan’}
○ Decision Tree: max_depth = {10, 20, 30}, criterion = ‘entropy’
○ SGD: loss = ‘hinge’, penalty = ‘l2’, max_iter = 5000, alpha = {0.01, 

0.001, 0.0001}









Results

● Grid search determined the decision tree method was best 
for our data

● Accuracy on the test data was 58.9%. Precision was 55.1% 
and recall was 39.9%

● Logistic regression, kNN, and SDG models had similar 
accuracies, around 56-58%

● These scores are still better than just guessing 1 each time 
(which would correspond to a score of around 44%).







Future Directions/Revisions

● If we had more time, we would first try using SVM unimpeded
● We would also want to try and fully visualize the data and how 

each classifier separated the data
● Experimenting with less features would facilitate this, but at an 

unknown cost to accuracy and overall predictability
● Since we know that SVC was causing issues with its needed time, 

utilizing more rows might provide a boost to our overall score
● Trying more hyperparameter options in Grid Search to further 

cover levels which might be more applicable to a dataset of this 
size


