Property Assessment in Madison, Wisconsin STAT 451 GROUP PROJECT

By: Ahsan Fawwaz, Faris Hazim, Imran Iskander, Nick Elias, and Tyler Kelly **Group 16**

Overview

Understanding Madison's property dynamics

Key Areas of Exploration

Our Data

• Assessor Property Information (2022)

• Property Tax Rolls (2016 – 2022)

• Metro Transit Ridership by Stop (2022)

 Datasets obtained from City of Madison
 Open Data: <u>https://data-</u> <u>cityofmadison.opendata.arcgis.com/</u>

Heatmap of Property Values in Madison

QUESTION 1 -

TAXES

• Does <u>property value</u> correlate with <u>tax</u> <u>amount</u>?

• How do tax rates and tax amounts vary across different property types?

 What is the distribution of the amount of tax payments per property class (Residential, Commercial, Industrial, Agricultural)?

• Does property value correlate with tax amount?

• How do <u>tax rates and tax amounts vary</u> across different property types?

 What is the distribution of the amount of tax payments per property class (Residential, Commercial, Industrial, Agricultural)?

• Does property value correlate with tax amount?

• How do <u>tax rates and tax amounts vary</u> across different property types?

 What is the distribution of the amount of tax payments per property class (Residential, Commercial, Industrial, Agricultural)?

• Does property value correlate with tax amount?

• How do tax rates and tax amounts vary across different property types?

• What is the <u>distribution of the amount</u> of tax payments per property class (Residential, Commercial, Industrial, Agricultural)?

Tax Classification for Residential Properties

For DecisionTreeClassifier(), the best score is 0.936
Best parameters: {'criterion': 'entropy', 'max_depth': 3}

```
For KNeighborsClassifier(), the best score is 0.928
Best parameters: {'metric': 'euclidean', 'n_neighbors': 5}
```

```
For LogisticRegression(), the best score is 0.921
Best parameters: {'C': 1, 'max_iter': 5000}
```

```
For SVC(), the best score is 0.929
Best parameters: {'C': 1000, 'kernel': 'rbf'}
```

- Binned tax amounts into 5 classes: Very Low, Low, Intermediate, High, and Very High
- Trained 4 different models to predict a property's tax class based on its value.
- Models compared: Decision Tree, k-NN, Logistic Regression, and SVM.
- Found that <u>Decision Tree</u> (criterion: entropy, max_depth: 3) has the best score of 93.6% on validation data.

Decision Tree Diagram

QUESTION 2 -

PROPERTIES & MARKET VALUES

Average Property Values ('16 – '22)

Average Assessed Property Value in Madison (2016-2022)

Environmental Impacts on Property Market Value

- Insignificant impact on residential properties
- In general, properties built far from noise factors are valued higher
- Industrial properties are valued
 higher near landfill

Environmental Impacts on Property Market Value (2022)

Classifying Property Classes based on the Environmental Aspects

Flow:

- Random sampling of 30000 residential properties and merging back with other types
- 80% train/ 10% validation/ 10% test split
- Oversampling training data
- Hyperparameter tuning
- Model comparison: Logistic regression, SGD, decision tree, kNN, and stacking [SGD + kNN]

Result:

 <u>kNN</u> classifier with <u>metric = 'euclidean', n_neighbors = 2</u> obtained the highest accuracy on validation data

Classifying Property Classes based on the Environmental Aspects

Evaluating kNN with best hyperparameters on test data:

Accuracy	Precision	Recall	
0.834	0.766	0.834	

Classifying Property Values (high/low) based on Physical Features

Classifying Property Values (high/low) based on Physical Features

Accuracy score on validation data:

Decision Tree	kNN	Logistics	Gradient Boosting
0.843	0.845	0.853	0.868

- \therefore Final model \rightarrow Gradient boosting classifier
- ∴ Parameters → 'learning_rate': 0.1, 'max_depth': 9, 'n_estimators': 100

Classifying Property Values (high/low) based on Physical Features

How <u>good</u> is Gradient Boosting on test data?

Precision: 0.868 Recall: 0.852 Accuracy: 0.858 AUC: 0.936

QUESTION 3 -

BRINGING IT ALL TOGETHER

Predicting Market Values for Residential Properties

Predicting Market Values for Residential Properties

R^2 score on validation data:

Decision Tree	kNN	Linear Regression	SGD	Random Forest	Gradient Boosting
0.750	0.767	0.842	0.826	0.795	0.870

 \therefore Final model \rightarrow Gradient boosting regressor

- ∴ Parameters → 'learning_rate': 0.1, 'loss': 'squared_error', 'max_depth': 9, 'n_estimators': 100
- $\therefore R^2$ score on test data $\rightarrow 0.881$

Top 20 Most Important Features for Estimating Residential Property Market Value in Madison

Feature Importance