
MLB Stolen Base Predictions

Colin Macy, Teagen Williams, Sam Handel, 
Waleed Almousa, Thomas Huspeni



Introduction
Questions:

● Can we predict the outcome of a stolen base 
attempt? 

● What factors influence the success of a stolen 
base attempt the most?



Dataset 
● Custom dataset from a combination of MLB 

statcast resources.

● Includes data from the catcher throwing, pitch 
tempo, sprint speed, and pitcher running game 
leaderboards.

● Retrieved stolen base attempts with API call to 
baseballsavant.mlb.com.



Feature Choice ● Started with nine potential variables that could 
be used to predict. 

●
● Used permutation importance to narrow it down 

to four: runner_sprint_speed, 
lead_dist_gained_opp, lead_dist_gained_att, and 
cs_aa_per_throw.



Exploratory Plots The Dataset is imbalanced

● 81% of observations were successes
● Resampling/data manipulation

Was needed



Over/Undersampling
● Using this data set, any model can predict 1 for 

every observation and get an 81% accuracy 
score
○ This model would be useless!

● Oversampling solved this by creating more 
“fake” observations that had an outcome of 0

● Our models that used oversampling had a better 
accuracy score than undersampling

● Undersampling would require for 1000+ 
observations to be removed, leaving the model 
with significantly less data to be trained on



Model Selection SVC(‘C’: 1, ‘Kernel’: ‘Linear’) scored .648

LogisticRegression(‘C’: 1, ‘max_iter’: 5000) scored .639

DecisionTreeClassifier(‘criterion’: ‘Entropy’, ‘max_depth’: 7) scored .692

KNeighborsClassifier(‘metric’: ‘euclidean’, ‘n_neighbors’: 1) scored .867

RandomForestClassifier(‘max_depth’: 100, ‘n_estimators’: 100) scored .896

● We tried a range of different models with a range of different 
hyperparameters to get the best fits

● The first three performed worse than just guessing a successful 
stolen base (.80)

● KNeighborsClassifier and RandomForestClassifier performed 
better than guessing a successful stolen base (.80)

From this training and results on our validation data, we decided to 
use RandomForestClassifier() for the best overall performance in 
predicting MLB stolen bases.



Random Forest 
Classifier

Random forest works better than a decision tree as it 
reduces overfitting and is subject to less noise. The 
only way to confirm such is through obtaining the 
accuracy of our test data. 

● Upon testing we received a score of .88 or 88%
● This is 7.8% more accurate than the success 

rate of stolen bases throughout the year. 

Based on these results we can confirm that our model 
works and we can efficiently predict stolen base 
success rate to a better extent than just guessing. 



Conclusion
Obtain Dataset 
● Compiled data set from many 

different MLB statistical resources

Feature Choice and Oversampling
● Narrowed down features with 

permutation importance
● Data was oversampled so we had to 

find a model that could predict better 
than always predicting success 

Random Forest model predicts at .896
● MLB teams could use this model to 

decide when they should have 
runners steal bases

● This would enable teams that use this 
to have an advantage over other 
teams in terms of stolen base 
successes


