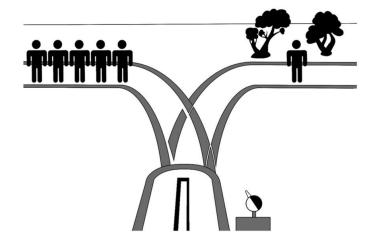


Using machine learning to support autonomous vehicles making moral decisions

STAT 451 Project

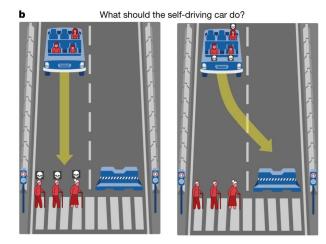
By: Zhaoqing Wu, Yuchen Zhu, Shuohao Cai, Haowen Tian, and Weiran Wang


Contents

- > Research Questions
- > Data & methods
- > Results
- > Conclusion

☐ Research Questions

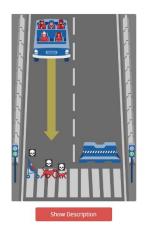
How autonomous vehicle deal with moral dilemmas?

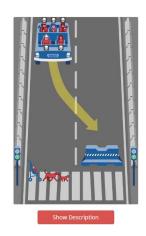


Objective: develop a model to help AV make decisions when facing moral dilemmas.

☐ Research Questions

➤ If you were an AV, what will you do? — an online experiments conducted by Edmond et al., 2018.




Q1: What model can help to make moral decisions from a human perspective?

Q2: What features (attributes of the characters and the situations) influence individuals' moral preferences to save or sacrifice specific groups in AV-related dilemmas?

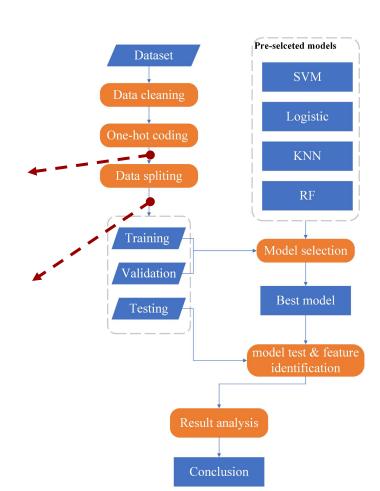
Datasets and methods

- ➤ Each row is a scenario, which is a combination of people with different characteristics.
- > total: 10505 rows/observations

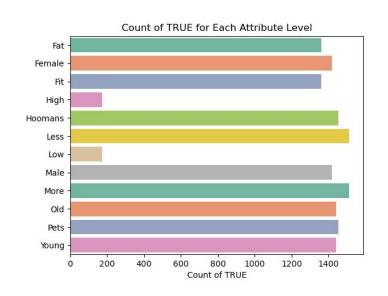
(one scenario example)

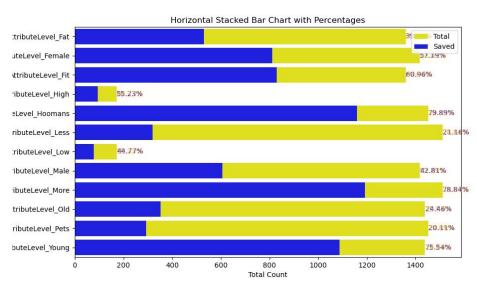
 children	dog	cat	 old male	old female		
 1	1	1	 0	0	•••	

Datasets and methods

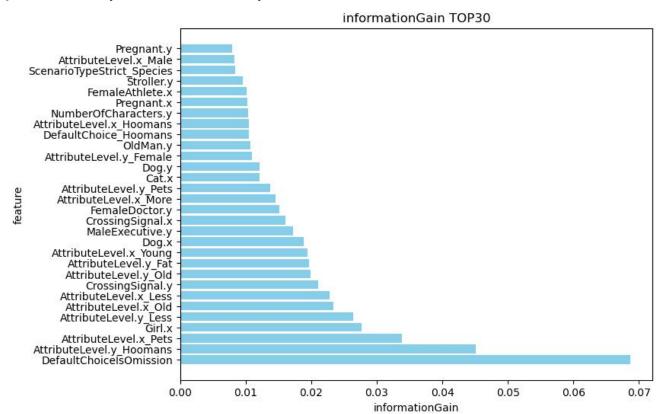

> Technique routes

One-hot encoding:


• 10505 × 112 (111 features + 1 target variable)

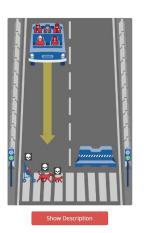

Data splitting:

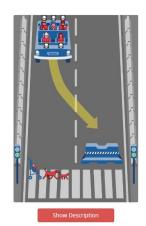
- training data (7353, 112) 70%
- validation data (1576, 112) 15%
- testing data (1576, 112) 15%


Exploratory Data Analysis

☐ Results

Exploratory Data Analysis


Preprocessing


Two rows with the same ID

One row with feature labeled .x and .y

Remove the same or contrary features in .y

	children.x	dog.x	Intervention.x	 children.y	dog.y	Intervention.y	
•••	1	1	0	 0	1	1	

Preprocessing

- 1. Choose the rows from the US
- 2. Combine rows and remove some .y features
- 3. Remove rows contain missing values
- 4. One-hot encoding
- 5. Data splitting:
 - training data (7353, 112) 70%
 - validation data (1576, 112) 15%
 - testing data (1576, 112) 15%

☐ Results

> Model performance

prediction

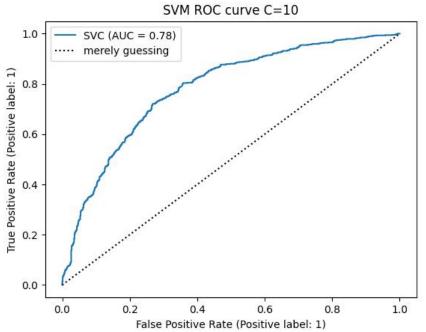
SVM

RF

_
0
+
$\boldsymbol{\omega}$
>
O
S
9
0

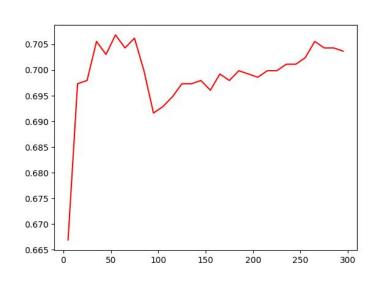
	positive	negative	
positive	464	252	
negative	182	678	

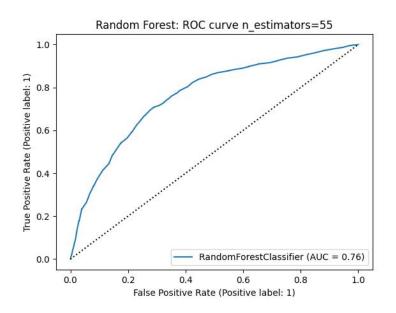
	positive	negative
positive	465	251
negative	207	653


kNN

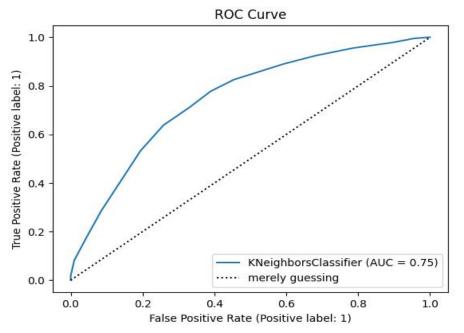
	positive	negative	
positive	437	279	
negative	191	669	

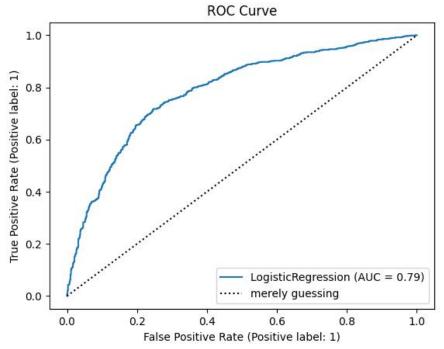
Logisti


	~		
	positive	negative	
positive	469	247	
negative	187	673	


> SVM (C=10,kernel='rbf',probability=True)

On test data, accuracy:0.725, precision score: 0.729, recall score: 0.788


Random Forest (n_estimators=55)


On test data, accuracy:0.709, precision score: 0.722, recall score: 0.759

kNN (metric='euclidean', n_neighbors=17)

On test data, accuracy:0.702, precision score: 0.778, recall score: 0.706

Logistic Regression (C=2, max_iter=500)

On test data, accuracy:0.725, precision score: 0.783, recall score: 0.732

Conclusion

- Models
- > Features

ScenarioOrder: 0.0968961397961013 CrossingSignal.y: 0.039959649151486726

NumberOfCharacters.x: 0.03857100216475041 NumberOfCharacters.y: 0.03704163729547549

DefaultChoiceIsOmission.y: 0.03203180845558651 CrossingSignal.x: 0.03171784452507852

DefaultChoiceIsOmission.x: 0.02612886372150328

JefaultChoicelsUmission.x: 0.02612886372150328

Man. y: 0.0236415643118627 Woman. y: 0.022573508764777556 Man. x: 0.02109407822013728 Woman. x: 0.02068058292891325 LeftHand. x: 0.019733409611225015

LeftHand.y: 0.01948737424878349 Barrier.x: 0.01934453516860985 PedPed: 0.01864154637011021

DescriptionShown. x: 0.018388277915336426 DescriptionShown. y: 0.017563617457196944 Template.x_Mobile: 0.016484783205943532 Template.v Mobile: 0.015245619133468178

Barrier. y: 0.014658707335310567

☐ Conclusion

- > Takeaway
- > What to improve

