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Dataset

6,194 observations with 10 features:

application_id gender international major

1 Female False 3. Business
2 Male False 3. Humanities
Female True 3. Business
Male False 3. STEM

Male False

° For race: NaN denotes international student

° For admission: NaN denotes rejected

o

o

race

Asian

Black

NaN

Black

STEM Hispanic

There are three admission results: admit, waitlist, and reject
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For the sake of this project, we will be predicting “admitted” versus “not admitted”, grouping together waitlist and reject



Dataset - Column Values

e gender

o String - Male, Female
e major

o  String - Business, Humanities, STEM
® race

o  String - Asian, Black, Hispanic, White, Other, NaN
e work industry
o  String - CPG, Energy, Health Care, Investment Management, Nonprofit/Gov, PE/VC, Retalil

e admission
o  String - Admit, Waitlist, NaN (reject)

® gpa

o  Float
e gmat

0 Float
e work exp

o Float

e international
o Boolean - True, False



Questions of Interest

e (Can we predict MBA acceptance at Wharton School of Business based on
gender, GPA, GMAT, work experience, and/or undergraduate major?
e \Which of these variables is most important for predicting MBA acceptance at

Wharton?

-



Exploratory Graphs

Admission Results Admission Rate by Gender
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Exploratory Graphs Continued

Admission Rate by Work Industry
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Exploratory Graphs Continued
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race_Unknown was all the

NaN values in race

o race_Unknown =
international



Feature Engineering

Change NaN race to Unknown (International)
o Didn’t use international as a feature since it will be represented by this

Converted gender, work industry, race, and major to dummy variables for modeling
Converted Admission status’ to O - rejected, 1 - admitted
Used Standard Scaling for GPA, GMAT, Work Experience

o GMAT values were significantly larger than GPA, Work Experience

Split data into 80% Train, 10% Val, 10% Test

o  Significantly more rejects than admits -> oversampled training data



Model Selection

Grid Search Method:
e Logistic Regression with C of [.01, 1, 10, 100]
e Decision Tree with max depth of [10, 500,1000, None]
e KNN with #of neighbors [1, 2, 3, 4, 5]
Result:
e KNN (1 Neighbor) and Decision Tree (No Max Depth)
both often chosen



Feature Selection

feature importance_mean importance_std feature importance_mean importance_std

gmat 0.171568 0.003586 gmat 0.165846 0.003691
gpa 0.169943 0.003072 gender_Male 0.106739 0.002451

gender_Male 0.106356 0.002651 gpa 0.098862 0.003438

work_exp 0.095126 0.003629 . P e rm u tati O n fe a t u re

major_STEM 0.062252 0.001771 S e I e Cti O n u S i n g

race_Unknown (International) 0.057505 0.001988

race_White 0.050618 0001612 d e C| S | on tre e an d

work_industry_Consulting 0.039372 0.001198

race_Black 0.028000 0.001221 K N N W Ith 1 N e I g h b O r

work_industry_PE/VC 0.027683 0.000617

work_exp 0.065682 0.003074

race_Black 0.046352 0.001853

race_Unknown (International) 0.043633 0.001826

major_Humanities 0.036686 0.001637

race_White 0.027442 0.001251

work_industry_Technology 0.025670 0.001673
major_STEM 0.025189
work_industry_PE/VC 0.022454

work_industry_Technology 0.022317 0.000627

race_Hispanic 0.020807 0.000908 . g m at y g pa 3

work_industry_lInvestment Banking 0.020736 0.000732

work_industry_Nonprofit/Gov 0.020217 0.000598 g e n d e r m a | e y a n d

work_industry_Financial Services 0.016218 0.000494

work_industry_Other 0011881 0.000399 WO rk_ex p mo St

work_industry_Health Care 0.011459 0.000377

important in both

work_industry_Investment Management 0.006542 0.000198

work_industry_Financial Services 0.021825
work_industry_Consulting 0.020539
race_Hispanic 0.019243
work_industry_Investment Banking 0.015627
work_industry_Nonprofit/Gov 0.012679
work_industry_Other 0.011164
work_industry_Investment Management 0.006646
race_Other 0.005103

work_industry_Health Care 0.004234

work_industry_Real Estate 0.003895 work_industry_Real Estate 0.004256 0.000146

work_industry_Retail 0.000749 work_industry_Media/Entertainment 0.002330 0.000089

work_industry_Media/Entertainment 0.000651 work_industry_Energy 0.001482 0.000052

work_industry_Retail 0.001160 0.000041

work_industry_Energy 0.000459

Decision Tree (No KNN (1 Neighbor)
Max Depth)




Feature Selection - Continued

Small dataset permitted this feature
selection

o Fit many models with different
number of features

Accuracy of model based off number
of top features used

After 2 features the model changes
only slightly
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Model Evaluation

No model works well:

- Decision Tree highest accuracy value was 82.8%.
- KNN (1 Neighbor) highest accuracy value was 82.6%

For comparison, accuracy with simply guessing not admit every time is 85.47%




Logistic Regression Graphs

GPA vs Admission GMAT vs Admission

data
logistic curve
sample proportions

e data
logistic curve
. sample proportions

Admission Rate

2
m
14
c
Q
7
2]
=
3

650 700 750
GMAT




Conclusion

e Grid search was unable to choose a best model

e Most important variables consistently were: ‘gpa’, ‘gmat’, and “gender_male’

e Based off the given data and features, unable to explain well whether a
person would be admitted or rejected

e Could be a factor outside of the dataset impacting admission rate more

directly



Potential Next steps

Potential other factors that could impact admission predictions:

- Undergraduate School Ranking
- Quality of Reference Letters
- Quality of Personal Statements



