

Credit Card Approval Prediction

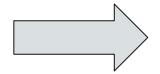
Group 9: Stella Ahn, Matt Eichenberg, Tyler Ippolito, David Shatsky, Spencer Warshaw

Intro

- Analyze credit card approval data to identify key factors influencing approval decisions
- Kaggle dataset...
- Objectives:
 - 1. Determine demographic trends affecting approval
 - 2. Improve performance in predicting approvals

Research Questions

- 1. What demographic factors most significantly influence credit card approval rates?
- 2. How can predictive modeling techniques be optimized to accurately forecast credit approval outcomes?


Data Description

Application records438,557 entries

ID, gender, age, income, education, occupation, and family status

Credit Record1,036,231 entries

Credit records of applicants

Merged on `ID` 77,715 records, 20 columns

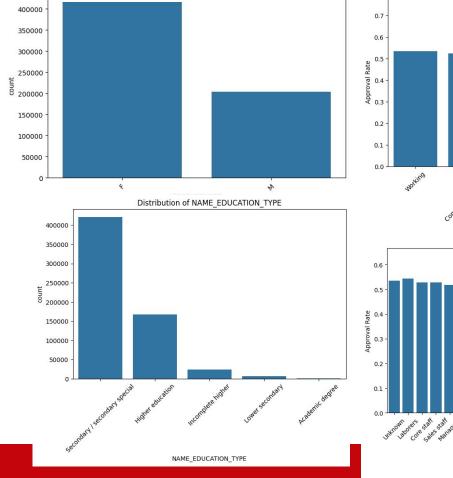
Data Preprocessing

	FLAG_MOBIL	DAYS_BIRTH	AMT_INCOME_TOTAL	STATUS	OCCUPATION_TYPE
0	1	-12005	427500.0	С	NaN
1	1	-12005	427500.0	С	NaN
2	1	-12005	427500.0	С	NaN
3	1	-12005	427500.0	С	NaN
4	1	-12005	427500.0	С	NaN
					_
777710	1	-19398	202500.0	С	Drivers
777711	1	-19398	202500.0	С	Drivers
777712	1	-19398	202500.0	С	Drivers
777713	1	-19398	202500.0	С	Drivers
777714	1	-19398	202500.0	С	Drivers

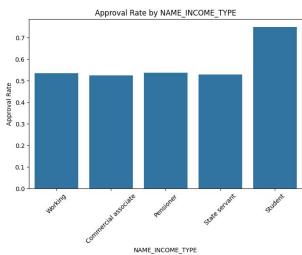
777715 rows × 5 columns

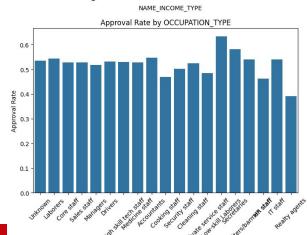
	AGE	AMT_INCOME_TOTAL	STATUS_Approved	OCCUPATION_TYPE
0	32	0.258721	1	Unknown
1	32	0.258721	1	Unknown
2	32	0.258721	1	Unknown
3	32	0.258721	1	Unknown
4	32	0.258721	1	Unknown
777710	53	0.113372	1	Drivers
777711	53	0.113372	1	Drivers
777712	53	0.113372	1	Drivers
777713	53	0.113372	1	Drivers
777714	53	0.113372	1	Drivers

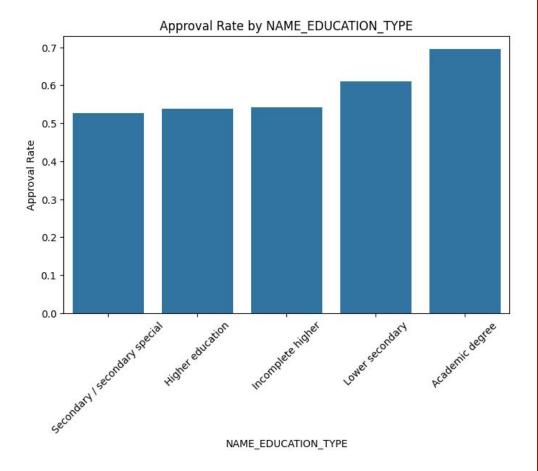
777715 rows × 4 columns


Feature Engineering

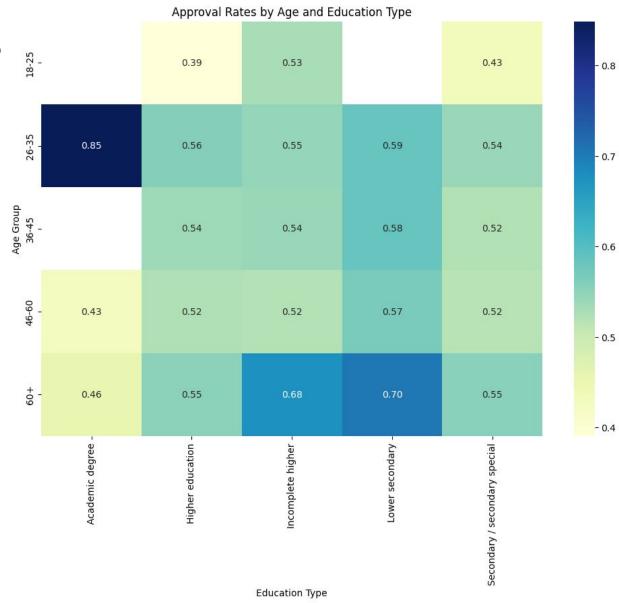
- Calculated age in years then Age Binning
- Categorical Encoding (target / one-hot encoding)
- Mapped the 'STATUS' values to create a binary target variable.
 - '0' to '5': Represent days past due
 - 'C': Indicates the credit is closed.
 - 'X': Indicates no loan for the month.
 - Assign 1 (approved) for 'C' and 'X'.
 - Assign 0 (not approved) for '0' to '5'.



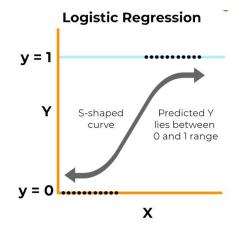

Exploratory Data Analysis

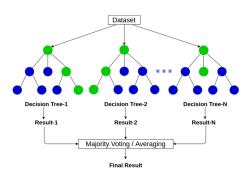

- Plotted distributions for categorical variables
- Evaluating approval rates by age, education and income type

Distribution of CODE GENDER



Exploratory Data Analysis

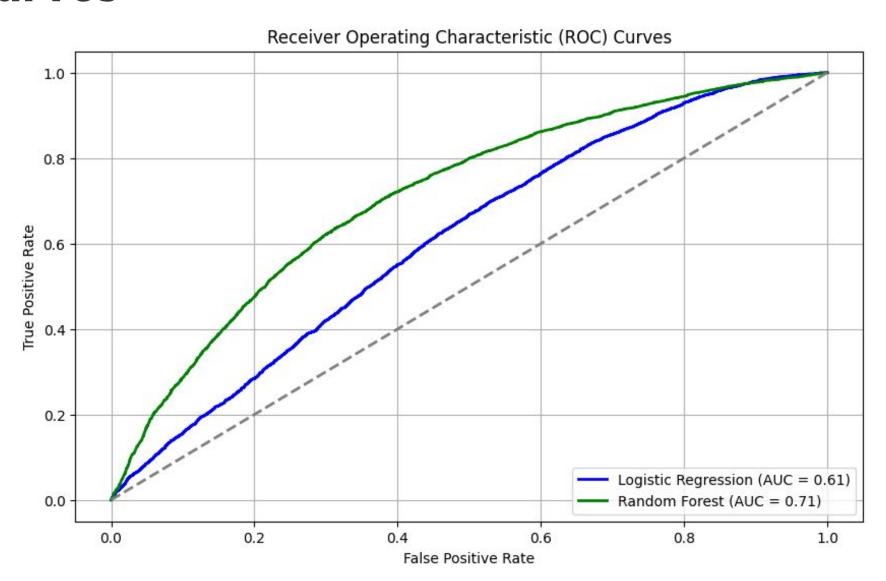

 26-35 Age Group with an Academic Degree has the highest approval rate


Principal Component Analysis

Machine Learning

- 1. Used stratified sampling to create a balanced sample of the data.
- 2. Scaled numerical features
- 3. PCA, regularization, and feature importance analysis
- 4. Train and test split
- 5. Models:
- Logistic Regression → Area Under ROC Curve (AUC) score: **0.612177**
- Random Forest Classifier → AUC: **0.712067**
- 6. Cross-Validation scores:
 - Logistic Regression → Area Under ROC Curve (AUC) score: **0.608112 ± 0.007**
- Random Forest Classifier → AUC: **0.705041 ± 0.005**

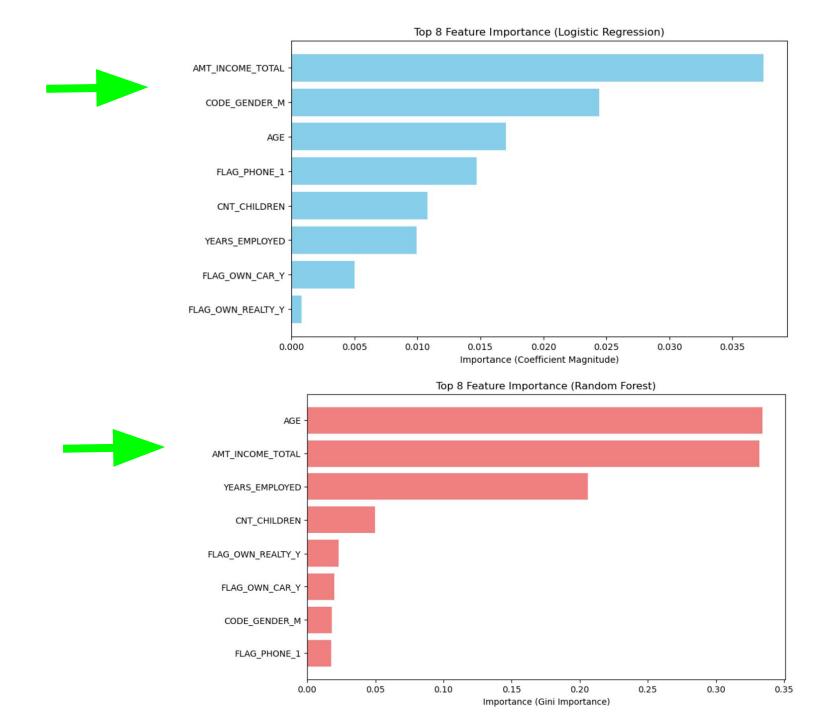
Random Forest



Selected Features

- 'CNT_FAM_MEMBERS',
- 'DAYS_EMPLOYED',
- 'AGE',
- 'MONTHS_BALANCE' record month
- 'CNT_CHILDREN' number of children
- 'OCCUPATION_TYPE'
- 'FLAG_PHONE' if theres a phone

ROC Curves



Challenges

- Handled missing data in occupation type
- Class imbalance (approved vs not approved)
 - stratified sampling
- Moderate predictive power
- Feature selection/engineering (interaction between variables)

- Data Quality and Preprocessing
- Demographic Insights
- Approval Rate Analysis
- Modeling
- Bias and Fairness
- Considering more advanced methods

