Analysis of College Student Sleep Pattern

Evelyn Pan, Lois Liu, Samanyu Arora, YiduoWang, Zesheng Yin

shutterstock.com · 2462646575

- 1. Can we predict sleep quality based on lifestyle factors
- 2. Can we find the correlation between sleep quality and other features? Which feature has the most influential effect?
- 3. Can we visualize the sleep patterns over weekdays and weekends?

The conclusion & limitation

Data Set

[9]: import pandas as pd

[11]:	<pre>file_path = "C:/Users/Lois/Desktop/Stat 451/Homework/student_sleep_patterns.csv'</pre>
	<pre>student_sleep_patterns = pd.read_csv(file_path)</pre>
	<pre>student_sleep_patterns.head()</pre>

Student_ID Age Gender University_Year Sleep_Duration Study_Hours Screen_Time Caffeine_Intake Physical_Activity Sleep_Quality Weekday_Sleep_Start Week

0	1 2	24 Other	2nd Year	7.	7 7.	9 3.4	2	37	10	14.16
1	2 2	21 Male	1st Year	6.	3 6.	0 1.9	5	74	2	8.73
2	3 2	22 Male	4th Year	5.	1 6.	7 3.9	5	53	5	20.00
3	4 2	24 Other	4th Year	6.	3 8.	6 <mark>2</mark> .8	4	55	9	19.82
4	5 2	20 Male	4th Year	4.	7 2.	7 2.7	0	85	3	20.98
	Student_ID	Age	Sleep_Duration	Study_Hours	Screen_Time	Caffeine_Intake	Physical_Activity	Sleep_Quality	Weekday_Sleep_Start	Weekend_Sleep_Start
	Student_ID	Age	Sleep_Duration	Study_Hours	Screen_Time	Caffeine_Intake	Physical_Activity	Sleep_Quality	Weekday_Sleep_Start	Weekend_Sleep_Start
count	500.000000	500.00000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000	500.000000
mean	250.500000	21.53600	6.472400	5.981600	2.525000	2.462000	62.342000	5.362000	11.166860	12.375860
std	144.481833	2.33315	1.485764	3.475725	0.859414	1.682325	35.191674	2.967249	5.972352	5.789611
min	1.000000	18.00000	4.000000	0.100000	1.000000	0.000000	0.000000	1.000000	1.080000	2.050000

Categorical data: Gender, University_Year

Prediction data: Sleep_Duration, Sleep Quality

Lifestyle factors: Study_Hours, Screen Time, Physical_Activity.

Missing Values:	
Student_ID	0
Age	0
Gender	0
University_Year	0
Sleep_Duration	0
Study_Hours	0
Screen_Time	0
Caffeine_Intake	0
Physical_Activity	0
Sleep_Quality	0
dtype: int64	
Data Types:	
Student_ID	int64
Age	int64
Gender	int32
University_Year	int32
Sleep_Duration	float64
Study_Hours	float64
Screen_Time	float64
Caffeine_Intake	int64
그는 걸 걸린 것을 것을 것을 것을 수 있다.	
Physical_Activity	int64
Physical_Activity Sleep_Quality	int64 int64

Descri	ptive Statis	tics:				
	Student_ID	Age	Gender	Univers	ity_Year	Sleep_Duration
count	500.000000	500.00000	500.000000	50	0.000000	500.000000
mean	250.500000	21.53600	0.964000		1.462000	6.472400
std	144.481833	2.33315	0.792439		1.094968	1.485764
min	1.000000	18.00000	0.000000		0.000000	4.000000
25%	125.750000	20.00000	0.000000		0.750000	5.100000
50%	250.500000	21.00000	1.000000		1.000000	6.500000
75%	375.250000	24.00000	2.000000		2.000000	7.800000
max	500.000000	25.00000	2.000000		3.000000	9.00000
	Study_Hours	Screen_Tim	e Caffeine	_Intake	Physical	_Activity \
count	500.000000	500.00000	0 500	.000000	5	00.00000
mean	5.981600	2.52500	0 2	.462000		62.342000
std	3.475725	0.85941	4 1	.682325		35.191674
min	0.100000	1.00000	ø ø	.000000		0.000000
25%	2.900000	1.80000	0 1	.000000		32.750000
50%	6.050000	2.60000	0 2	.000000		62.500000
75%	8.80000	3.30000	0 4	.000000		93.250000
max	12.000000	4.00000	0 5	.000000	1	.20.000000
	Sleep_Quali	ty				
count	500.0000	9 0				
mean	5.36200	90				
std	2.96724	49				
min	1.0000	90				
25%	3.0000	90				
50%	5.0000	90				
75%	8.0000	90				

10.000000

max

50

40

20

10

3.5

100

3.0

80

4.0

120

Count 30

Plotting distribution of numerical features

Plotting distribution of numerical features
fig, axes = plt.subplots(3, 2, figsize=(15, 15))
sns.histplot(data['Age'], ax=axes[0, 0], kde=True)
sns.histplot(data['Sleep_Duration'], ax=axes[0, 1], kde=True)
sns.histplot(data['Study_Hours'], ax=axes[1, 0], kde=True)
sns.histplot(data['Screen_Time'], ax=axes[1, 1], kde=True)
sns.histplot(data['Caffeine_Intake'], ax=axes[2, 0], kde=True)
sns.histplot(data['Physical_Activity'], ax=axes[2, 1], kde=True)

fig.suptitle('Distribution of Numerical Features', fontsize=16)
plt.tight_layout()
plt.show()

50

40

Count 30

20 -

10 -

Pairplot of Key Variables

10 4						
10	\wedge					
8 -		(0)(0) 000((000)(0) 00)				
ξ			CO.O.S (COX0/103(0) OD			
6 -		(0.0)(0)(0) (0) (0)(((0)		•)) • •)) • • •)) • • • • • • • • • • •		
a'		@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@				
- 4 -			······································			
2 -	-	@(@)(@)@)@)@)@)@)@)@)@)@)@)@)@)@)@)@)@)	(0)(01(0)02(000 (0) (0))	0(00)))0(0))((0)(0))(0		
l		••••••••••••••••••••••••••••••••••••••	•***	•)•)(•)••)(•(•(•))•((0))•)	· · · · · ·	•••••
120 - 100 - 80 - 60 - 20 - 0 - 0 -						
12 - 10 - 8 - 8 - 6 - 7 - 2 - 2 - 0 - 7						
- 4.0 3.5 - 3.5 - 9.0 - 2.5 - 2.5 - 2.0 - 1.5 - 1.0 -						
5 -	••••	• ceste) • ceste) • ceste) •		ese ((e) (e) est (e) est (e)		
4 - 0		(((()(())))) (((()))(((()))))	(00)(010(0)(0))	(0.0.0((0)00))0((0.0)0)0		
u ntak			0) (0) ((0)) (0) (0) (0) (0) (0) (0) (0)			
eine 2 -		(0):0 00) 0 ((0)) 0 (0) 0 -	(050)(0))(00)(0)(60)(0)			
Jeo 1 -	••••••					
0 -		(00010100000000000000000000000000000000	(6)10(01(0)(0)(0)(0))(0)	•);0);0;0;0;0;(0;0);0);0)		
25 -			())(()))())()())(())(())()()())()()()(4 ~
24			() () () () () () () () () () () () () (
27						
23-						
eg 22 -		all ac al (al 6 (c)) (c) -				
~ 21 -				•>X0;03;0):(0;0;0;0;(0):(0;0;0)	•••••	
20 -	•••••••	01003I(0)0(0100)(0 010 -	<pre>((0)101(0)201(0)((0.0(0))</pre>	(0))(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)	•••••	
19 -			(0)(0)(0)(0)(0)	(((00)0)0(0000)0)0(0)		
18 -			(03)(0 00%0 0(0(0)33(0))	0)000000000000000000		
	0 5 10	0 50 100 150	0 5 10 15	0 2 4	-2 0 2 4 6	15 20 25
	Sleep_Quality	Physical_Activity	Study_Hours	Screen_Time	Caffeine_Intake	Age

Pairplot of Key Variables

BoxPlot to identify outliers and for insights in order to create new features

 \triangleright

[40] Pythor Feature Distribution with Outliers 500 400 300 200 100 0. Caffeine_Intake Student ID Gender University Year Sleep Duration Study Hours Age Screen Time Physical Activity Sleep_Quality

Linear Regression Model predicting sleep duraction based on the lifestyle factors

```
# Feature selection
X = data[['Study_Hours', 'Screen_Time', 'Physical_Activity']]
y = data['Sleep_Duration']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Training a Linear Regression Model
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)
y_pred = linear_model.predict(X_test)
#results
print("Linear Regression R2 Score:", r2_score(y_test, y_pred))
print("Mean Squared Error:", mean squared error(y test, y pred))
```

Linear Regression R2 Score: -0.010234377553459462 Mean Squared Error: 2.2773686633604235

Regularization Method: Lasso Regression

Lasso Regression Model

lasso_model = Lasso(alpha=0.1, random_state=42)
lasso_model.fit(X_train, y_train)
y_pred_lasso = lasso_model.predict(X_test)

print("Lasso Regression R2 Score:", r2_score(y_test, y_pred_lasso))
print("Lasso Regression Mean Squared Error:", mean_squared_error(y_test, y_pred_lasso))

Plotting

plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred_lr, alpha=0.6, color='blue', label='Linear Regression', edgecolor='k')
plt.scatter(y_test, y_pred_lasso, alpha=0.6, color='green', label='Lasso Regression', edgecolor='k')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='red', linestyle='--', label='Ideal Fit')

Legend

plt.title('Actual vs Predicted Values')
plt.xlabel('Actual Sleep Duration')
plt.ylabel('Predicted Sleep Duration')
plt.legend()
plt.grid(True)
plt.show()

Lasso Regression R2 Score: -0.010989650960830044 Lasso Regression Mean Squared Error: 2.2790712741885963

kNN model predicting sleep duration based on lifestyle factors

predict outcomes based on the similarity of features \rightarrow better for a nonlinear relationship?

```
X = sleep_data[['Study_Hours', 'Screen_Time', 'Physical_Activity']]
y = sleep_data['Sleep_Duration']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Train a KNN Regressor
knn_model = KNeighborsRegressor(n_neighbors=5)
knn_model.fit(X_train, y_train)
y_pred = knn_model.predict(X_test)
knn_r2 = r2_score(y_test, y_pred)
knn_mse = mean_squared_error(y_test, y_pred)
knn_mse = mean_squared_error(y_test, y_pred)
```

```
#results
```

```
print("KNN R-squared Score:", knn_r2)
print("Mean Squared Error:", knn_mse)
```

KNN R-squared Score: -0.25607092350432326 Mean Squared Error: 2.831557333333333 still a negative R-squared, which means the kNN model are still not effectivey capturing the relationship with Sleep_Duration

```
# Scatter plot of actual vs. predicted values
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, alpha=0.7)
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
plt.xlabel("Actual Sleep Duration")
plt.ylabel("Predicted Sleep Duration")
plt.title("KNN Regression: Actual vs. Predicted")
plt.show()
```

KNN Regression: Actual vs. Predicted 9 8 Predicted Sleep Duration 7 6 5 4 5 6 8 9 Actual Sleep Duration

The red line represents the perfect prediction and points lying on or close to the line indicate accurate prediction. Since our graphs showed that most points are scattered away from red line and very discrete, indicating that the kNN model is struggling to make accurate predictions.

Random Forest Regressor rf_model = RandomForestRegressor(n_estimators=200, max_depth=10, random_state=42) rf_model.fit(X_train_reg_scaled, y_train_reg) rf pred = rf model.predict(X test reg scaled)

Gradient Boosting Regressor

gb_model = GradientBoostingRegressor(n_estimators=200, learning_rate=0.05, random_state=42) gb_model.fit(X_train_reg_scaled, y_train_reg) gb_pred = gb_model.predict(X_test_reg_scaled)

XGBoost Regressor

xgb_model = XGBRegressor(n_estimators=200, learning_rate=0.05, max_depth=6, random_state=42) xgb model.fit(X train reg scaled, y train reg) xgb_pred = xgb_model.predict(X_test_reg_scaled)

```
# Stacking Regressor
```

```
stacking model = StackingRegressor(
   estimators=[('rf', rf_model), ('gb', gb_model)],
   final estimator=xgb model
```

```
stacking model.fit(X train reg scaled, y train reg)
stack pred = stacking model.predict(X test reg scaled)
```

```
# Evaluation for regression models
```

models = ['Random Forest Regressor', 'Gradient Boosting', 'XGBoost', 'Stacking'] predictions = [rf_pred, gb_pred, xgb_pred, stack_pred]

```
for model, pred in zip(models, predictions):
   print(f"{model} R^2 Score:", r2_score(y_test_reg, pred))
   print(f"{model} Mean Squared Error:", mean_squared_error(y_test_reg, pred))
```

Random Forest, Gradient Boositng, XGBoost, Ensemble regressors

Random Forest Regressor R^2 Score: -0.13452194278199614 Random Forest Regressor Mean Squared Error: 10.816078393706439 Gradient Boosting R^2 Score: -0.258380725419894 Gradient Boosting Mean Squared Error: 11.9968984838631 XGBoost R^2 Score: -0.41392195224761963 XGBoost Mean Squared Error: 13.479768382562083 Stacking R^2 Score: -0.25733721256256104 Stacking Mean Squared Error: 11.98695090218868

Feature Comparison for two models

From these graphs we can see that the top 3 features study_physical, weekend sleep duration and caffiene_physical have the highest importance, so in order to provide insights regarding improving sleep cycle we should focus on these factors

	Correlation Heatmap									
Student_ID		-0.011	0.017	-0.01	0.048	-0.055	-0.034	-0.026		0.013
- -	-0.011		0.036	-0.026	-0.016		-0.082	0.0083	0.016	0.02
Gender	0.017	0.036		-0.02	0.0026		-0.03			-0.013
University_Year	-0.01	-0.026	-0.02	1	-0.041	-0.0099	0.04	-0.027	0.045	0.02
Sleep_Duration	0.048	-0.016	0.0026	-0.041		-0.011	0.068	-0.015	-0.0068	-0.016
Study_Hours	-0.055			-0.0099	-0.011		-0.04	0.032	-0.049	0.059
Screen_Time	-0.034	-0.082	-0.03			-0.04		0.052	-0.037	0.0094
Caffeine_Intake	-0.026	0.0083		-0.027	-0.015		0.052	1	-0.028	-0.0063
hysical_Activity				0.045	-0.0068	-0.049	-0.037	-0.028		-0.014
Sleep_Quality F	0.013	0.02	-0.013		-0.016		0.0094	-0.0063	-0.014	1
	Student_ID -	Age -	Gender -	University_Year -	Sleep_Duration -	Study_Hours -	Screen_Time -	Caffeine_Intake -	hysical_Activity -	Sleep_Quality -

Correlation Matrix

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

Based on the previous models insights we can feature engineer and use random forest classifier for our Final prediction

# Splitting data into features and target for RandomForestClassifier	Accuracy: 0.08
<pre>x = data.drop('Sleep_Quality', axis=1) y = data['Sleep_Quality']</pre>	Classification
<pre>x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)</pre>	
# Feature scaling (for RandomForestClassifier)	1
<pre>scaler = StandardScaler()</pre>	2
X_train = scaler.fit_transform(x_train)	3
X_test = scaler.transform(x_test)	4
	5
# Model training (RandomForestClassifier)	6
<pre>model = RandomForestClassifier(random_state=42)</pre>	7
<pre>model.fit(X_train, y_train)</pre>	8
	9
<pre># Predictions and evaluation (RandomForestClassifier)</pre>	10
<pre>y_pred = model.predict(X_test)</pre>	
accuracy = accuracy_score(y_test, y_pred)	accuracy
<pre>print("Accuracy:", accuracy)</pre>	macro avg
<pre>print("\nClassification Report:\n", classification_report(y_test, y_pred))</pre>	weighted avg

Accuracy: 0.08				
Classification	Report:			
	precision	recall	f1-score	support
1	0.14	0.17	0.15	18
2	0.14	0.22	0.17	9
3	0.14	0.17	0.15	12
4	0.00	0.00	0.00	8
5	0.00	0.00	0.00	8
6	0.00	0.00	0.00	9
7	0.17	0.11	0.13	9
8	0.00	0.00	0.00	8
9	0.00	0.00	0.00	7
10	0.00	0.00	0.00	12
accuracy			0.08	100
macro avg	0.06	0.07	0.06	100
weighted avg	0.07	0.08	0.07	100

Analysis and Visualization of sleep pattern difference in weekdays and weekends.

```
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
# Weekday sleep patterns
sns.kdeplot(data['Weekday_Sleep_Start'], ax=axes[0], shade=True, label='Weekday Sleep End', color='blue')
axes[0].set_title('Weekday_Sleep_End'], ax=axes[0], shade=True, label='Weekday Sleep End', color='yellow')
axes[0].legend()
# Weekend sleep patterns
sns.kdeplot(data['Weekend_Sleep_Start'], ax=axes[1], shade=True, label='Weekend Sleep Start', color='blue')
sns.kdeplot(data['Weekend_Sleep_End'], ax=axes[1], shade=True, label='Weekend Sleep End', color='yellow')
axes[1].set_title('Weekend_Sleep_End'], ax=axes[1], shade=True, label='Weekend Sleep End', color='yellow')
axes[1].set_title('Weekend_Sleep_End'], ax=axes[1], shade=True, label='Weekend Sleep End', color='yellow')
axes[1].tight_layout()
plt.tight_layout()
plt.show()
```

Use Kernel Density Estimation plots to visualize the distribution. KDE plots show the density of values to identify differences.

The distribution for weekday_sleep_start is spread over a slightly broader range, suggesting more variability in when students go to sleep on weekdays than weekends.

The distribution for weekday_sleep_end has two sharper peak than weekend, showing that most students wake up around the same time

The gap between weekend_sleep_start and weekend_sleep_end is wider, indicating longer sleep duration fpr more students on weekends than weekdays.

Overall, students tend to maintain a stricter sleep scheduleand sleep duration appears shorter on weekdays

Limitation of Our Project

- The selected features (lifestyle factors) have a weak or no significant correlation with the target variable (Sleep_Qaulity and Sleep_Duration), making it difficult for any model to perform well since the R-squared is very low and even negative.
- theis happens because of several reasons:
 - the dataset is still consider small (only 500)
 - most of college students have the age range between 18-24, who are young and healthy without that many sleeping disorders. The study hours/caffeine intake/physical activity/screen time hours will not affect their sleep that much
 - the data range is relatively small and most of them are rounded to hours in whole number. There is not that many apparent correlation between each features in hour scale.
 - dataset lacks of other crucial features such as "stress_levels",
 "envrionments", "dietary habits" which are more likely to influence college students sleep patterns.