House Price Analysis in New York

Charlie Ko, Changqi Jin, Ewan Li, Thomas Li, Sam Coomes

Data

New York Housing Market

- Price analysis
- Clustering analysis

Independent Variables we are interested in:

- Type of the house
- Location
- Number of Bed/Bath
- Sqft

Data Transformation

Linear model

Linear regression

- Without categorical data:
 - R-square: 0.368; MSE: 0.094; Running time: 0.013s.
- With categorical data: (one-hot encoding):
 - R-square: 0.574; MSE: 0.077; Running time: 0.022s.

Non-linear model

Support Vector Machine for Regression : SVR(kernel='linear', C=1)

- 61.84 seconds, with only 240 rows
- Too expensive

Non-linear model

We choose a faster way, GradientBoostingRegressor.

It first use a decision tree to make a regression of the data, then use another decision tree to make a regression of the residual and add the new prediction function to the former with a certain learning rate.

Repeat above steps several times (the parameter 'n_estimators'), and then we get a final prediction function.

Non-linear model

GradientBoostingRegressor

- Hyperparameters:
 - learning rates=np.arange(0.0001,1,0.1)
 - n_estimators=np.arange(100,1000,100)
- R square precise: 0.75
- n_estimators:300
- Learning rate: 0.20

But it is too slow, the total time is 205.2

If we use GridSearchCV, the time is 488s, and result is not precise. The learning rate is 200, the R square is 0.73.

Visualization

TYPE

Cluster analysis

Radar Chart with New Variable (price_per_bed)

Discussion

Limitations:

- 4860 rows of pricing data may not encapsulate entire NY Market
 - 3.7 Million Housing Units
- Model cannot be scaled or generalized to other States/Cities
 - Weights and Params distinct to NY
- Too many variables for inexpensive model
- Inability to capture historical trends
 - Model is based on snapshot of current data, historical price fluctuations not included.

Future Topics:

- Enhanced Feature Selection
 - Improve accuracy and computational cost
- Larger Dataset Integration
 - Increased robustness & scalability
- Real Time Analysis
 - Continuous data collection
 - Faster processing times
 - API Connectivity for Developers/Researchers
- External Data Implementation
 - Seasonal factors/patterns
 - Addition of economic data