THE

Group members: $\big)$ $\big($ Rui Gao, Chenfeng Wu, Haorui Wu, Yi Xu, Lin Zhang

by Machine Learning Models **Music Genre Classification**

$$
\leftarrow \qquad \qquad \overbrace{\qquad \qquad }^{02}\qquad \longrightarrow \qquad \qquad
$$

Motivation

As I am currently learning the piano, I am interested in applications of machine learning in the domain of music, which can include tasks such as music modeling, music genre classification, and artificial music composition.

So, I want to use some machine learning models such as logistic regression, decision tree, bagging and boosting to do classification of music genre.

Dataset

We choose the **GTZAN** dataset ,which is the "most-used public dataset for evaluation in machine listening research for music genre recognition.

We will do some same modification of the original dataset. We split each audio file **into 3-second** clips and choose only the classical and pop genres. As a result, we will have $2*100*10 = 2000$ samples.

Most notably, it includes a dataset of 30-second audio clips from 100 audio files for 10 genres each. And each sample has **57 features**.

Main Variables

04

Rms : the Root Mean Square loudness of an audio segment.

Chroma : capture the distribution of energy across the 12 pitch classes (C, C#, D, ..., B) of the musical scale. **Spectral centroid** : indicates where the "center of mass" for a sound is located. **Rolloff**: measure of the frequency below which a specified percentage (usually 85%) of the total **Zero crossing rate**: the rate at which the signal waveform crosses zero. **Harmony**: the combination of different musical notes simultaneously to create chords and chord progressions. When a piece is "harmony high," it emphasizes complex on creating a fuller textured sound. **Perceptual** : refer to audio features that relate to how humans perceive sound **Tempo**: beats per minute.

20 mfccs : refers to "mel-frequency cepstral coefficients", it is used to capture timbral qualities of sound.

$\overline{\text{cos}\rightarrow}$ Boxplots of Some Features

$\overline{\text{comp}(\text{obs})}$

 $\frac{1}{\sqrt{2}}$

label

- classical
- \bullet pop

\limsup

Feature Pairs

Logistic Regression

- Implement package directly and evaluate
- Implement batch gradient approach and evaluate
- Implement mini-batch gradient approach and evaluate

Equations and Codes

Loss function and derivatives

- Logistic regression model (single input): $y^{(i)} = \sigma(\mathbf{w}^T x^{(i)} + b), \quad \sigma(z) = \frac{1}{1 + e^{-z}}$
- Logistic regression model (N inputs): $y = \sigma(Xw + b)$, $\sigma(z) = \frac{1}{1 + e^{-z}}$, $\mathbf{b} = \begin{bmatrix} b & \cdots & b \end{bmatrix}^T$
- Loss (single training example): $l(y^{(i)}, y^{(i)}) = -\left(y^{(i)} \log y^{(i)} (1 y^{(i)}) \log (1 y^{(i)})\right)$
- Loss (set of N training examples): $L(y, y) = \frac{1}{N} \sum_{i=1}^{N} l(y^{(i)}, y^{(i)})$
- Derivative of $L(y, y)$ w.r.t w: $\frac{\partial L}{\partial w} = \frac{1}{N} X^T (y y)$
- Derivative of $L(y, y)$ w.r.t $b: \frac{\partial L}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} y^{(i)})$
- \sim Define functions for batch gradient descent, mini-batch gradient descent, and evaluation

```
[ ] # Returns the sigmoid of the input
    def sigmoid(z):
      return 1.0 / (1.0 + np.exp(-z))
```
[] # Returns the probability predictions for a set of inputs X given weights w and bias b $def get_yhat(X, w, b)$ return sigmoid(np.matmul(X, w) + b)

[] # Returns the cross-entropy loss as well as derivatives w.r.t. weights w and bias b for a set of N training examples (X, y) def get_loss_and_derivatives (X, y, w, b, N) : yhat = $get_yhat(X, w, b)$ $loss = -1.0/N * np.sum(y * np.log(yhat) + (1.0 - y) * (np.log(1.0 - yhat)))$ $dw = np.matmul(X.T, (yhat - y))/N$ $db = np.sum(yhat - y)/N$ return loss, dw, db

Outcome

Outcome

 $\mathcal{L}(\mathcal{A})$

Outcome

Decision Tree

13

- Decision Tree comparation

-
- Interpretation

$$
\leftarrow \qquad \qquad \boxed{14 \quad \longrightarrow}
$$

Boosting & Bagging

Boosting Result

Firstly , we use GridSearchCV to choose the best hyperparameters, and the hyperparameter tuning is performed using the validation set and train set during this process.

17

Then ,we fit the model and get the accuracy, precision, recall, f1-score of the test set.

eXtreme Gradient Boosting(decision tree model)

AdaBoost(logistic regression)

Bagging Classifier

Setting Result

- Model: BaggingClassifier with Decision tree
- **Hyper-parameters:**
	- N_estimator: How many models to ensemble
	- Max_depth: max depth of each tree
	- **EXP:** Criterion: gini, entropy, log_loss

Permutation Feature Importance (Bar Plot)

■ Best parameters:

- N_esimators = 10
- $Max_\text{depth} = 20$
- \blacksquare Criterion = gini

- Accuracies:
	- Validation: **0.97**
	- Test: **0.9899**

Feature Importance

-
-

$$
\begin{array}{c}\n\leftarrow \\
\hline\n\end{array}
$$

- Spectral bandwidth & mfcc & rolloff - Perceptual & Rms

Spectral bandwidth & mfcc & rolloff

Perceptual Variance & rms

Classical music typically has a lower spectral bandwidth and rolloff mean. Pop music tends to have a higher spectral bandwidth and rolloff mean.

Classical music generally shows lower perceptual variance

and rms_mean. rms_mean.

Pop music tends to exhibit higher perceptual variance and

THANK YOU

Group members: $\big)$ $\big($ Rui Gao, Chenfeng Wu, Haorui Wu, Yi Xu, Lin Zhang

