Music Genre Classification by Machine Learning Models

THE

Rui Gao, Chenfeng Wu, Haorui Wu, Yi Xu, Lin Zhang

Group members:

$$\bullet$$
 02 \longrightarrow

Motivation

As I am currently learning the piano, I am interested in applications of machine learning in the domain of music, which can include tasks such as music modeling, music genre classification, and artificial music composition.

So, I want to use some machine learning models such as logistic regression, decision tree, bagging and boosting to do classification of music genre.

Dataset

We choose the <u>GTZAN</u> dataset ,which is the "most-used public dataset for evaluation in machine listening research for music genre recognition.

Most notably, it includes a dataset of 30-second audio clips from 100 audio files for 10 genres each. And each sample has <u>57 features</u>.

We will do some same modification of the original dataset. We split each audio file <u>into 3-second</u> clips and choose only the classical and pop genres. As a result, we will have 2*100*10 = 2000 samples.

Main Variables

Rms : the Root Mean Square loudness of an audio segment.

Chroma : capture the distribution of energy across the 12 pitch classes (C, C#, D, ..., B) of the musical scale. **Spectral centroid** : indicates where the "center of mass" for a sound is located. **Rolloff** : measure of the frequency below which a specified percentage (usually 85%) of the total **Zero crossing rate**: the rate at which the signal waveform crosses zero. **Harmony**: the combination of different musical notes simultaneously to create chords and chord progressions. When a piece is "harmony high," it emphasizes complex on creating a fuller textured sound. **Perceptual** : refer to audio features that relate to how humans perceive sound **Tempo**: beats per minute.

20 mfccs : refers to "mel-frequency cepstral coefficients", it is used to capture timbral qualities of sound.

Boxplots of Some Features

Pairplots

06

 $\frac{1}{2}$

label

- classical
- рор

Heatmap

07

Feature Pairs rolloff_mean

s with High	Correlation (greater than	0.75):			
	spectral_centroid_mean	0.986815			
	spectral_bandwidth_mean	0.977943			
lwidth_mean	spectral_centroid_mean	0.950121			
	rms_mean	0.905822			
	rms_mean	0.891388			
	spectral_bandwidth_var	0.888235			
_rate_mean	spectral_centroid_mean	0.879322			
_rate_var	spectral_centroid_var	0.862412			
	rms_mean	0.853679			
	rms_var	0.847452			
	rolloff_mean	0.822883			
lwidth_mean	rms_mean	0.819893			
	rms_mean	0.815552			
	spectral_centroid_mean	0.813627			
_rate_mean	rolloff_mean	0.808917			
	spectral_bandwidth_mean	0.806290			
roid_mean	rms_mean	0.795427			
	spectral_centroid_var	0.789379			
	spectral_centroid_mean	0.770322			
	rolloff_mean	0.768551			
	rms_mean	-0.757909			
	mfcc1_mean	-0.759145			
	zero_crossing_rate_mean	-0.824188			
	spectral_bandwidth_mean	-0.932321			
	rolloff_mean	-0.946767			
	spectral_centroid_mean	-0.957169			

Logistic Regression

- Implement package directly and evaluate
- Implement batch gradient approach and evaluate
- Implement mini-batch gradient approach and evaluate

\bullet 09 \rightarrow

Equations and Codes

Loss function and derivatives

- Logistic regression model (single input): $y^{(i)} = \sigma(\mathbf{w}^T x^{(i)} + b), \quad \sigma(z) = \frac{1}{1+e^{-z}}$
- Logistic regression model (N inputs): $\hat{y} = \sigma(X\mathbf{w} + \mathbf{b}), \quad \sigma(\mathbf{z}) = \frac{1}{1+e^{-\mathbf{z}}}, \quad \mathbf{b} = \begin{bmatrix} b & \cdots & b \end{bmatrix}^T$
- Loss (single training example): $l(y^{(i)}, y^{(i)}) = -(y^{(i)} \log y^{(i)} (1 y^{(i)}) \log (1 y^{(i)}))$
- Loss (set of N training examples): $L(y, y) = \frac{1}{N} \sum_{i=1}^{N} l(y^{(i)}, y^{(i)})$
- Derivative of L(y, y) w.r.t w: $\frac{\partial L}{\partial w} = \frac{1}{N} X^T (y y)$
- Derivative of L(y, y) w.r.t $b: \frac{\partial L}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} y^{(i)})$

```
[ ] # Returns the sigmoid of the input
def sigmoid(z):
    return 1.0 / (1.0 + np.exp(-z))
```

[] # Returns the probability predictions for a set of inputs X given weights w and bias b
def get_yhat(X, w, b):
 return sigmoid(np.matmul(X, w) + b)

[] # Returns the cross-entropy loss as well as derivatives w.r.t. weights w and bias b for a set of N training examples (X, y) def get_loss_and_derivatives(X, y, w, b, N): yhat = get_yhat(X, w, b) loss = -1.0/N * np.sum(y * np.log(yhat) + (1.0 - y) * (np.log(1.0 - yhat))) dw = np.matmul(X.T, (yhat - y))/N db = np.sum(yhat - y)/N return loss, dw, db

Outcome

Outcome

+

Outcome

	Number of	Train		Validation
Algorithm	iterations	accuracy	Test accuracy	accuracy
SGD	/	0.8466	0.85	0.845
Batch Gradient Descent	500	0.759	0.79	0.76
Mini-Batch Gradient				
Descent	500	0.868	0.87	0.87
Batch Gradient Descent	50000	0.872	0.88	0.87
Mini-Batch Gradient				
Descent	15000	0.858	0.87	0.865

13

Decision Tree

- Interpretation

- Decision Tree comparation

$$\bigstar$$
 14 \longrightarrow

Accurcy	F1-score	Corss-Val	
94.5%	94.2%	96.60%	
96.0%	95.8%	97.90%	
97.5%	97.4%	96.90%	
96.0%	95.8%	96.90%	
94.5%	94.2%	96.60%	
95.5%	95.3%	97.20%	
95.0%	94.7%	96.10%	
95.0%	94.7%	96.20%	
	Accurcy 94.5% 96.0% 97.5% 96.0% 95.5% 95.0%	AccurcyF1-score94.5%94.2%96.0%95.8%97.5%97.4%96.0%95.8%94.5%94.2%95.0%94.7%95.0%94.7%	AccurcyF1-scoreCorss-Val94.5%94.2%96.60%96.0%95.8%97.90%97.5%97.4%96.90%96.0%95.8%96.90%94.5%94.2%96.60%95.0%94.7%96.10%95.0%94.7%96.20%

Feature	Importance
spectral_bandwidth_mean	0.197
perceptr_var	0.168
rms_mean	0.0972
mfcc5_var	0.0459

Boosting & Bagging

Boosting Result

Firstly, we use GridSearchCV to choose the best hyperparameters, and the hyperparameter tuning is performed using the validation set and train set during this process.

Then ,we fit the model and get the accuracy, precision, recall, f1-score of the test set.

Test Set Perfo	ormance:								
Accuracy: 1.0 Classification Report (Test):				Test Set Perf	Test Set Performance:				
				Accuracy: 0.9949748743718593					
				Classification Report (Test):					
	precision	recall	f1-score	support		precision	recall	f1-score	support
classical	1.00	1.00	1.00	100	classical	0.99	1.00	1.00	100
рор	1.00	1.00	1.00	99	рор	1.00	0.99	0.99	99
accuracy			1 66	199	accuracy			0.99	199
accuracy	1 00	1 00	1.00	100	macro avg	1.00	0.99	0.99	199
macro avg	1.00	1.00	1.00	199	weighted avg	1.00	0.99	0.99	199
weighted avg	1.00	1.00	1.00	199					

eXtreme Gradient Boosting(decision tree model)

AdaBoost(logistic regression)

\bullet 18 \longrightarrow

Bagging Classifier

Setting

- Model: BaggingClassifier with Decision tree
- Hyper-parameters:
 - N_estimator: How many models to ensemble
 - Max_depth: max depth of each tree
 - Criterion: gini, entropy, log_loss

Permutation Feature Importance (Bar Plot)

Result

Best parameters:

- N_esimators = 10
- Max_depth = 20
- Criterion = gini

- Accuracies:
 - Validation: 0.97
 - Test: 0.9899

$$\bigstar$$
 19 \longrightarrow

Feature Importance

- Spectral bandwidth & mfcc & rolloff - Perceptual & Rms

Spectral bandwidth & mfcc & rolloff

Classical music typically has a lower spectral bandwidth and rolloff mean. Pop music tends to have a higher spectral bandwidth and rolloff mean.

Classical music and rms_mean. Pop music tend rms_mean.

Perceptual Variance & rms

Classical music generally shows lower perceptual variance and rms_mean.

Pop music tends to exhibit higher perceptual variance and

+

THANK YOU

Group members:

Rui Gao, Chenfeng Wu, Haorui Wu, Yi Xu, Lin Zhang

+

U

+