Heart Disease Prediction

group 17 Qixuan Hu, Ledi Wang, Xuehan Wang, Jiaming Xu, Xiaoyi Zhang

Background Introduction

Importance of Heart Disease Prediction

- Leading causes of death workdwide
- Early detection&intervention are critical **Challenges in Traditional Prediction**
- Rely on expertise of medical professionals (time-consuming, expensive)
- Quality and quantity of data gathered **Purpose of ML project**
- Early detection
- Cost efficiency
 - **Targeted** interventions

Dataset Introduction

HeartDisease	BMI	Smoking	Alcoho	lDrin	nking S	Stroke P	hysicalHea	lth	\
0 No	16.60	Yes			No	No		3	
1 No	20.34	No			No	Yes		0	
2 No	26.58	Yes			No	No		20	
3 No	24.21	No			No	No		0	
4 No	23.71	No			No	No		28	
MentalHealth	DiffW;	alkina	Sex	Age	ategor	rv Race	Diabetic	\	
0 30	DIIIM	No	Female	ngev	55-5	9 White	Yes	`	
1 0		No	Female	80 0	or olde	r White	No		
2 30		No	Male	00 (65-6	9 White	Yes		
3 0		No	Female		75-7	9 White	No		
4 0		Yes	Female		40-4	4 White	No No		
		100							
PhysicalActiv	ity Ge	enHealth	Sleep	Time	Asthma	KidneyD	isease Ski	nCan	cer
0	Yes Ve	ery good		5	Yes	5	No		Yes
1	Yes Ve	ery good		7	No)	No		No
2	Yes	Fair		8	Yes	5	No		No
3	No	Good		6	No)	No		Yes
4	Yes Ve	ery good		8	No)	No		No

Target variable HeartDisease: binary categorical variable for whether a person has heart disease

17 features

Variables related to physical health **BMI:** Reflecting the degree of obesity **PhysicalHealth:** Number of days with physical health in the past 30 days **MentalHealth:** Number of days with mental health in the past 30 days **SleepTime:** Average sleep time per night (hours)

Smoking

DiffWalking

Variables related to lifestyle habits (all are binary variable)

AlcoholDrinking PhysicalActivity

Functional limitation related variables

Whether there is difficulty walking (binary)

variable: Yes/No).

17 features

Variables related to disease history

(binary variable) Stroke Diabetic (Borderline means blood sugar is close to the borderline of diabetes.) Asthma **KidneyDisease**

SkinCancer

Sex **AgeCategory:** Race: **GenHealth:**

Demographic variables

"18-24", "25-29", "30-34", "35-39", "40-44", "45-49", "50-54", "55-59", "60-64", "65-69", "70-74", "75-79", "80 or older"

White, Hispanic, Black, Other, Asian, American Indian/Alaskan Native

Evaluation of general health status (5level classification: Excellent, Very good, Good, Fair, Poor).

Data Processing

1. Binary Coding

- 'Yes', 'No' to 1 and 0
- 'Female', 'Male' to 1 and 0
- 'AgeCategory' to integers
 (e.g. 50-54 to 50, 55-59 to 55)

2. Random Sampling

- Original: 319769 patients
- Sampled 2% of the dataset
- make analysis faster and manageable
- ensures fairness and avoids bias

	HeartDisease	BMI	Smokin	g A	lcoholDrinking	g Strol	ke P	hysicalHealt	h١
126167	0	23.44		0	(0	0	10.	0
207506	0	32.49		0	(0	0	0.	0
274544	0	21.93		0	(0	0	0.	0
121049	0	26.58		0	(0	0	0.	0
260961	0	19.02		1	(0	0	2.	0
	MentalHealth	DiffWa	lking	Sex	AgeCategory	Diabet:	ic \		
126167	20.0		1	1	80		0		
207506	4.0		0	0	40		0		
274544	0.0		0	0	60		0		
121049	2.0		0	0	45		0		-
260961	2.0		0	1	80		0		
	PhysicalActiv	ity Sl	eepTime	As	thma KidneyD:	isease	Skin	Cancer	
126167	-	0	6.0		0	0		0	
207506		1	8.0		0	0		0	
274544		1	7.0		0	0		0	
121049		1	7.0		0	0		0	
260961		1	6.0		0	0		0	
(array([0, 1]), arrav	([5838,	558]))	-			-	

Preparing Data for Analysis 1. Balancing data (RandomOverSampler)

 Made sure patients with and without heart disease are fairly represented using oversampling

2. Scaling (MinMaxScaler)

- Convert different scales to a fixed range of [0,1]
- Make them contribute equally to the model

3. Splitting Data (train_test_split)

• Divided into training (80%) and testing (20%) sets to ensure accurate predictions

Models Comparison

SVM LogisticRegression DecisionTree KNN

Hyperparameters Tuning

Find the best hyperparameters for each model using *GridSearchCV*

Oversampled Training Data

Model Selection

Find the best model based on performance

Testing Data

Evaluating Metrics

F1 Score:

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2rac{ ext{prec}}{ ext{prec}}$$

Hyperparameters Tuning

F1 only

Heart Disease versus No Heart Disease

$rac{1}{2 ext{cision} \cdot ext{recall}} = rac{2 ext{TP}}{2 ext{TP} + ext{FP} + ext{FN}}.$

Model Selection

F1 Precision Recall Accuracy AUC

Logistic SVM Tree

1.0

Feature Evaluation

Feature importance with age

Feature importance without age

Feature Importance (Permutation Importance)

0.00	0.01 Import	0.02 ance	0.03	0.04

