Risk and Protective Factors of Student Alcohol Consumption

Andreea G., Nikki N., Rishav R., Mridula S., Alexander T.

Introduction

- Data: UCI ML data on Student Alcohol Consumption
 - Portuguese secondary school
 - Size: 423 students
 - Age: 15-18+
 - 30 original features
- Included several demographic and behavioral variables
- Response variable: Weekend alcohol consumption (Walc)

Relevant Variables

`goout` Going out with friends? (Likert, 1-5) `famrel` Quality of family relationships? (Likert, 1-5) `female` Female? (binary, 1/0)

`Fjob_services`

Father in service industry? (binary, 1/0)

`activities`

Extracurricular activities? (binary, 1/0)

Weekend alcohol consumption

Feature	Hypothesized Importance	Hypothesized Effect	Calculated Importance	Calculated Effect	
`goout`	Very high	Positive, large			
`famrel`	High	Negative, moderate			
`female`	Very high	Negative, large			

Data Format and Processing

- Binary variables reduced to 0, 1
- Parent job variables were one-hot encoded
- Likert scale responses and some categorical variables in ordinal form (1-5) but not linear
 - Ex: parent education and weekend alcohol consumption (Walc)

Feature Selection using Lasso

Lasso⁵ regression uses L1 regularization, finding $\min_{\mathbf{w},b} \left(\frac{1}{N} \sum_{i=1}^{N} [f_{\mathbf{w},b}(\mathbf{x}_i) - y_i]^2 + \alpha |\mathbf{w}| \right)$ where $\alpha \ge 0.^6$

Lasso with a = 1:

Lasso with a = 0.01:

array([0.01209795,	-0.01994296,	-0. ,	0.01600177, -0.09266678,	
0. ,	-0.04173893,	-0. ,	0. , 0. ,	
-0.00952809,	0. ,	0. ,	0. , -0.0720974 ,	
-0.05019267,	0.14489994,	0.02028593,	0.0083867 , -0.25878453,	
0. ,	0. ,	-0. ,	2.10094054])	
			Lecture 10/22: 05algorithmThreeFitRegularize	e.pdf

Lasso regression requires linear data

weekend alcohol consumption uses Likert scale
numeric: from 1 - very low to 5 - very high

Feature Selection only got us to ~45% Accuracy

- Train, test, split
- Permutation feature importance for logistic regression classifier and decision tree classifier
- The low accuracy score could be because the model had to predict 5 different scores instead of a binary yes or no

Top five features Logistic Regression Classifier:					
	cols	importance			
13	goout	0.104732			
16	female	0.056782			
18	famsize_GT3	0.030284			
3	studytime	0.029022			
11	famrel	0.027129			

Dec	ision Tre	e Classifier
	cols	importance
13	goout	0.505994
11	famrel	0.252997
16	female	0.188013
20	age	0.174763
7	activities	0 146372

Logistic regression classifier with features ["goout", "female", "famsize_GT3"] earned an accuracy score of 0.453. Decision tree classifier with features ["goout", "famrel", "age", "female"] earned an accuracy score of 0.425.

Binary classification may yield better predictions

- Compared low to average/high Walc
 - Binned 1-2 and 3-5
 - Yielded 60/40 split
- Data resampled to get 50/50 split

Five feature selection methods to identify key features:

By making the response variable binary, we were able to get the accuracy score up to around 72%.

Feature Selection Methods*	Key Features Identified
KBest (threshold = 3)	failures, goout , absences
f_classif (threshold = 7)	goout , female , failures, Fjob_teacher, studytime, famrel , activities
<pre>mutual_info_classif (threshold = 5)</pre>	goout, higher, Fjob_other, female, Medu
VarianceThreshold (threshold = 0.3)	age, Medu, Fedu, traveltime, studytime, failures, famrel , freetime, goout , health, absences
permutation_importance (log reg)	goout, Fjob_services, female, Fjob_other, famrel
permutation_importance (decision tree)	goout, female, Medu, age, freetime

*Adapted from Halil Ertan's Medium article

Of six models, highest accuracy score was ~76.4%

Logistic Regression models:

permutation_importance model with features ["goout", "female", "famrel", "Fjob_services", "Fjob_other"] earned an accuracy score of 0.745.

educated_guesswork model with features ["goout", "female", "activities", "famrel", "Fjob_services"] earned an accuracy score of 0.764.

Decision Tree models:

permutation_importance model with features ["goout", "female", "Medu", "age", "health"] earned an accuracy score of 0.679.

f_classif model with features ["goout", "failures", "Fjob_teacher"] earned an accuracy score of 0.736.

educated_guesswork model with features ["goout", "female", "activities", "famrel", "Fjob_services"] earned an accuracy score of 0.632.

/	Feature	Hypothesized Importance	Hypothesized Effect	Calculated Importance	Calculated Coefficient	
	`goout`	Very high	Positive, large	0.146	0.860	
	`famrel`	High	Negative, moderate	0.027	-0.458	
	`female`	Very high	Negative, large	0.021	-0.847	
	`Fjob_services`	Medium	Positive, moderate	0.014	0.523	
	`activities`	None	Negligible, N/A	0.007	-0.475	

Main takeaways

- 1. Response variable type matters \rightarrow a small change can lead to a large accuracy boost
- 2. Utilize multiple different feature selection methods
- 3. Good to have some intuition when putting together a model

Bibliography, Pt. 1

Bello, Camille. "Europe is home to the world's heaviest drinkers. Which country drinks the most alcohol?" *Euronews*, January 31, 2024.

https://www.euronews.com/health/2023/06/30/so-long-dry-january-which-country-drinks-the-most-alco hol-in-europe.

Cerqueira, Ana, Tania Gaspar, Fábio Botelho Guedes, Emmanuelle Godeau, and Margarida Gaspar De Matos. "Alcohol and tobacco use in Portuguese adolescents: The relationship with social factors, future expectations, physical and psychological symptoms." *Children & Society* 36, no. 5 (February 11, 2022): 1010–25. https://doi.org/10.1111/chso.12552.

- Deeken, Friederike, Tobias Banaschewski, Ulrike Kluge, and Michael A. Rapp. "Risk and protective factors for alcohol use disorders across the lifespan." *Current Addiction Reports* 7, no. 3 (June 4, 2020): 245–51. https://doi.org/10.1007/s40429-020-00313-z.
- Erol, Almila, and Victor M Karpyak. "Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations." *Drug and Alcohol Dependence* 156 (September 5, 2015): 1–13. https://doi.org/10.1016/j.drugalcdep.2015.08.023.
- Ertan, Halil. "Feature selection methods in SciKit Learn | Medium." *Medium*, November 10, 2023. https://medium.com/@hertan06/which-features-to-use-in-your-model-350630a1e31c.

Bibliography, Pt. 2

Marques-Vidal, Pedro, and Carlos Matias Dias. "Trends and determinants of alcohol consumption in Portugal: results from the National Health Surveys 1995 to 1996 and 1998 to 1999." *Alcoholism Clinical and Experimental Research* 29, no. 1 (January 1, 2005): 89–97. https://doi.org/10.1097/01.alc.0000150001.31722.d1.

NIAAA. "Risk factors: Varied Vulnerability to Alcohol-Related Harm." National Institute on Alcohol Abuse and Alcoholism, February 27, 2024.

https://www.niaaa.nih.gov/health-professionals-communities/core-resource-on-alcohol/risk-factors-varied-vulnerability-alc ohol-related-harm.

Paixão, Maria Margarida, and Mélissa Mialon. "Help or hindrance? The alcohol industry and alcohol control in Portugal." International Journal of Environmental Research and Public Health 16, no. 22 (November 18, 2019): 4554. https://doi.org/10.3390/ijerph16224554.

Regional Office for Europe. "Trends in Alcohol Consumption 2016: Portugal." *WHO.Int*. World Health Organization, 2019. https://cdn.who.int/media/docs/librariesprovider2/country-sites/portugal/achp_fs_portugal.pdf.

Silvestre, Paulo, Jorge Oliveira, Hélder Trigo, Paulo Jorge Ferreira Lopes, and Nuno Colaço. "Risk factors of alcohol consumption among portuguese adolescents and young adults data from the Global-School Based Student Health Survey." *International Journal of Drug Development and Research* 7, no. 4 (2014): 50–55.

https://www.researchgate.net/publication/348944503_Risk_factors_of_alcohol_consumption_among_portuguese_adole scents_and_young_adults_data_from_the_Global-School_Based_Student_Health_Survey.

Statista. "Prevalence of alcohol consumption in Portugal 2022, by gender," March 25, 2024.

https://www.statista.com/statistics/1457946/portugal-alcohol-consumption-prevalence-by-gender/.

TPN/Lusa. "Portuguese consume 12 litres of pure alcohol annually." *The Portugal News*, May 21, 2021.

https://www.theportugalnews.com/news/2021-05-21/portuguese-consume-12-litres-of-pure-alcohol-annually/59951.