Alzheimer's Predictors

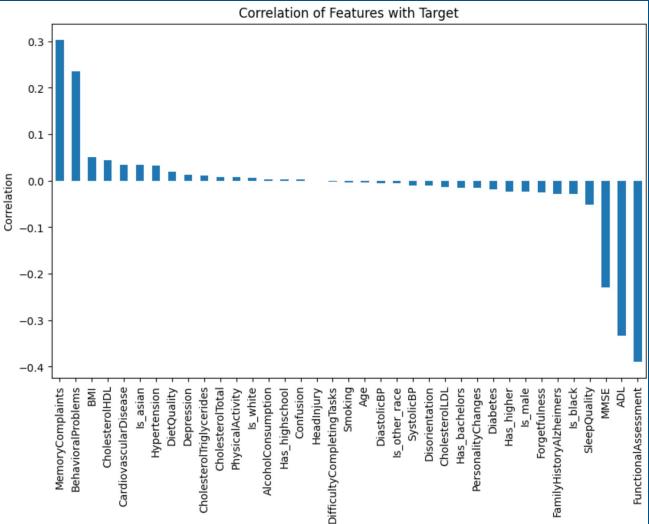
Stat 451 Noah Kornfeld, Angie Ohaeri, Melody Pak, Olivia Pelzek

Our Questions:

How can we best predict the presence of Alzheimer's in a patient?

Which category of factors is most accurate when predicting Alzheimer's disease in a patient?

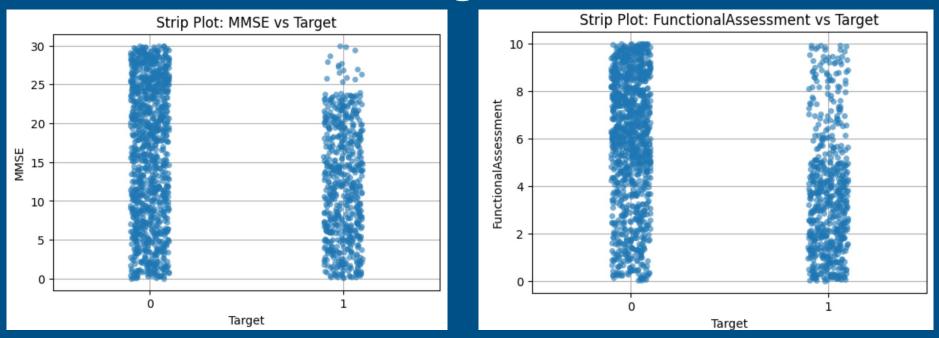
Our Dataset


- Uploaded to Kaggle by Rabie El Kharoua
- Contains extensive health data of 2,149 unique patients and their diagnosis
- 35 variables in this dataset

- Six categories:
 - Demographic Details
 - Lifestyle Factors
 - Medical History
 - Clinical Measurements
 - Cognitive and Functional Assessments
 - Symptoms

Feature Engineering

- 1. No Missing Features
- 2. Gender, Ethnicity, Education Level need to be manipulated
 - a. **Gender** ⇒ *Is_male* indicator feature
 - b. **Ethnicity** ⇒ *Is_white*, *Is_black*, *Is_asian*, *Is_other_race* indicator features
 - c. **Education Level** ⇒ Has_highschool, Has_bachelors, Has_higher indicator features
- 3. Dropped PatientID and DoctorInCharger Columns


Exploring the Data

Exploring the Data

	Age	<pre>Is_male</pre>	BMI	Smoking	AlcoholConsumption	PhysicalActivity	DietQuality	SleepQuality	FamilyHistoryAlzheimers
count	2149.000000	2149.000000	2149.000000	2149.000000	2149.000000	2149.000000	2149.000000	2149.000000	2149.000000
mean	74.908795	0.506282	27.655697	0.288506	10.039442	4.920202	4.993138	7.051081	0.252210
std	8.990221	0.500077	7.217438	0.453173	5.757910	2.857191	2.909055	1.763573	0.434382
min	60.000000	0.000000	15.008851	0.000000	0.002003	0.003616	0.009385	4.002629	0.000000
25%	67.000000	0.000000	21.611408	0.000000	5.139810	2.570626	2.458455	5.482997	0.000000
50%	75.000000	1.000000	27.823924	0.000000	9.934412	4.766424	5.076087	7.115646	0.000000
75%	83.000000	1.000000	33.869778	1.000000	15.157931	7.427899	7.558625	8.562521	1.000000
max	90.000000	1.000000	39.992767	1.000000	19.989293	9.987429	9.998346	9.999840	1.000000

Exploring the Data

MMSE: Mini-Mental State Examination

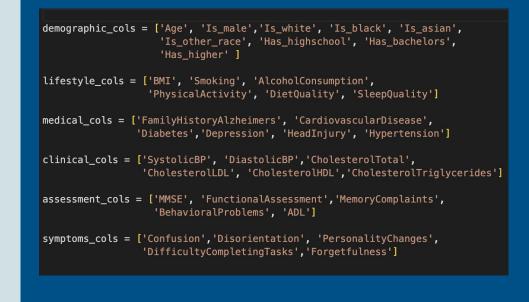
Functional Assessment: "Functional assessment score. Lower scores indicate greater impairment" Both included in "assessment factors" category Split data into 80% training, 10% validation, and 10% testing

Feature Selection

Select K Best:

 a. k = 10
 b. Scoring: f regression

 Variance Threshold:


 a. Threshold = 0.1

Features Included in Both

- 1. Memory Complaints
- 2. Behavioral Problems
- 3. MMSE
- 4. Functional Assessment
- 5. Sleep Quality
- 6. Cholesterol HDL
- 7. ADL
- 8. Cardiovascular Disease
- 9. BMI

Category Specific Splits

- 1. Select Specific Columns based on Category
- 2. Find best classification model for each category
- 3. Compare scores to find best category-model pair

Science Presentation

Model Selection: Grid Search

The Model Choices

1. Random Forest:

- a. n_estimators: 50, 100, 200
- b. max_depth: 10, 20, None

2. Support Vector Machine:

- a. C: O.1, 1, 10
- b. Kernel: linear, rbf

3. k-Nearest Neighbors

- a. n_neighbors: 5, 7, 9
- b. weights: uniform, distance
- **4.** Logistic Regression a. C: 0.001, 0.01, 0.1, 1

5. Decision Tree

- a. max_depth: 3, 5, 10, None
- b. min_samples_split: 2, 5, 10

Model Selection and Evaluation

1. Run Grid Search Method on following data-subsets:

a. All features, Variance Threshold, KBest, Feature Selection Combined, each category

2. Method returns data frame with best model (for each model choice)

- a. "Best" determined by accuracy and recall
- b. Maximize correctly classifying presence of Alzheimer's (True Positive)
- c. Minimize incorrectly classifying lack of Alzheimer's (False Negative)

3. Compare best overall method for each data-subset

a. Determine best way to predict the presence of Alzheimer's

4. Compare category models

a. Determine most "predictive" patient category

Results

Features	Best Model	Validation Performance	Testing Performance
All Features	Decision Tree Classifier	Accuracy: 0.944	Accuracy: 0.944
	max_depth = 20	Recall: 0.895	Recall: 0.921
	min_sample_split = 2	Precision: 0.944	Precision: 0.921
Variance Threshold	Decision Tree Classifier	Accuracy: 0.953	Accuracy: 0.944
	max_depth = 20	Recall: 0.895	Recall: 0.921
	min_sample_split = 5	Precision: 0.971	Precision: 0.921
K Best	Decision Tree Classifier	Accuracy: 0.958	Accuracy: 0.944
	max_depth = 20	Recall: 0.908	Recall: 0.921
	min_sample_split = 5	Precision: 0.971	Precision: 0.921
Combined Feature Selection	Decision Tree Classifier	Accuracy: 0.958	Accuracy: 0.944
	max_depth = 20	Recall: 0.908	Recall: 0.921
	min_sample_split = 5	Precision: 0.971	Precision: 0.921
Demographic	Support Vector Machine	Accuracy: 0.567	Accuracy: 0.647
	C = 0.1	Recall: 0.539	Recall: 0.013
	Kernel: Linear	Precision: 0.414	Precision: 0.500
Lifestyle	Support Vector Machine	Accuracy: 0.507	Accuracy: 0.647
	C = 0.1	Recall: 0.605	Recall: 0.000
	Kernel: Linear	Precision: 0.377	Precision: 0.000
Medical	Support Vector Machine	Accuracy: 0.442	Accuracy: 0.353
	C = 0.1	Recall: 0.895	Recall: 1.000
	Kernel: Linear	Precision: 0.378	Precision: 0.250
Clinical	Logistic Regression C = 0.01	Accuracy: 0.526 Recall: 0.592 Precision: 0.388	Accuracy: 0.521 Recall: 0.474 Precision: 0.364
Assessment	Decision Tree Classifier	Accuracy: 0.958	Accuracy: 0.944
	max_depth = 20	Recall: 0.907	Recall: 0.921
	min_sample_split = 2 or 5	Precision: 0.971	Precision: 0.921
Symptoms	Support Vector Machine	Accuracy: 0.428	Accuracy: 0.353
	<i>C</i> = 0.1	Recall: 0.684	Recall: 0.645
	<i>Kernel: Linear</i>	Precision: 0.344	Precision: 0.204

Best Models:

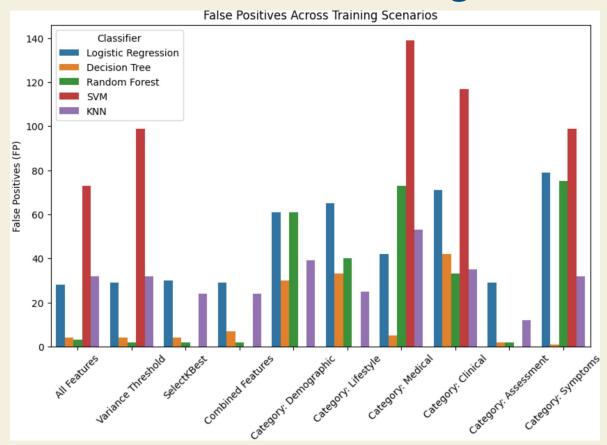
- Decision tree with max depth = 20 and min sample split = 2 or 5 produced highest recall and accuracy for validation and testing datasets for:
 - All Features
 - Variance Threshold Features
 - K (10) Best F Regression Features
 - Combined Feature Selection Features
 - Assessment Features

**(combined features: features chosen by select K best and variance threshold)

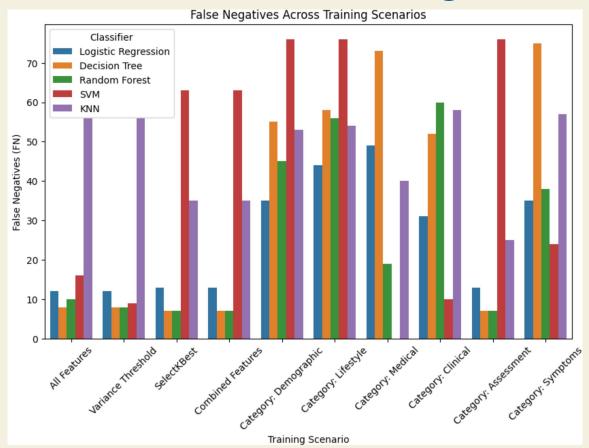
Performance on Testing Data – Accuracy, recall, precision

	Training Scenario	Classifier	Test Accuracy	Test Recall	Test Precision
1	All Features	Decision Tree	0.944186	0.921053	0.921053
2	All Features	Random Forest	0.934884	0.881579	0.930556
6	Variance Threshold	Decision Tree	0.944186	0.921053	0.921053
7	Variance Threshold	Random Forest	0.925581	0.855263	0.928571
11	SelectKBest	Decision Tree	0.944186	0.921053	0.921053
12	SelectKBest	Random Forest	0.944186	0.907895	0.932432
16	Combined Features	Decision Tree	0.944186	0.921053	0.921053
17	Combined Features	Random Forest	0.939535	0.894737	0.931507
41	Assessment Features	Decision Tree	0.944186	0.921053	0.921053
42	Assessment Features	Random Forest	0.944186	0.907895	0.932432

Result (how to best predict Alzheimer's)


- Training on all features had great accuracy, precision, and recall but the model could be overfit
- Decision tree/random forest were best performing models based on accuracy, precision and recall
- Most realistic and well performing models based on overall accuracy:
 - Decision tree using variance threshold feature selection
 - Decision tree or random forest using Select K best
 - Decision tree using combined features
 - Decision tree or random forest using assessment features

Our Chosen Model


The single best model is the decision tree model using the five assessment factors. This model has a recall of .92 and an accuracy of .94 while only using 5 features.

Error Analysis

Performance on Testing Data

Performance on Testing Data

Conclusions

- The single best model is the decision tree model using the five assessment factors. This model has a recall of .92 and an accuracy of .94 while only using 5 features.
- Unsurprising that models using assessment factors performed the best given the correlation between diagnosis and memory problems, behavioral problems, MMSE, and assessment (all included in "assessment" category)

Future Implications

- Likely predict presence of Alzheimer's accurately by just using the features in both the Variance Threshold and K Best feature selection methods
- Doctors should focus on gaining accurate assessment measurements as these are the most predictive features

Sources

https://www.kaggle.com/datasets/rabieelkharoua/alzheimers-disease

-dataset?resource=download