Mental Health Diagnosis and Treatment Monitoring

Presenters: Mai Tah Lee, Annie Purisch, Seth Mlodzik, Tianxing Liu

Contents

 $\left(\right)$

Introduction

Research Question Dataset Overview

☐ /₄ Limitations/Challenges

Dataset size or quality Other challenges

Methods

Explain models Decision Tree Logistic Regression

Outcome Highlights

Model Performance Results Insights

Introduction

Dataset Overview

Includes 17 features.

Synthetic dataset with patient demographics, symptoms, and treatment details.

Target outcome:

Outcome categorized as **Improved**, **No Change,** or **Deteriorated**.

Numerical Features: Age, Symptom Severity, Mood Score, Sleep Quality, etc.

Categorical Features: Gender, Diagnosis, Medication, Therapy Type, etc.

- 0 Patient ID
- 1 Age
- 2 Gender
- 3 Diagnosis
- 4 Symptom Severity (1-10)
- 5 Mood Score (1-10)
- 6 Sleep Quality (1-10)
- 7 Physical Activity (hrs/week) int64
- 8 Medication
- 9 Therapy Type
- 10 Treatment Start Date
- 11 Treatment Duration (weeks)
- 12 Stress Level (1-10)
- 13 Outcome
- 14 Treatment Progress (1-10)
- 15 AI-Detected Emotional State
- 16 Adherence to Treatment (%)

Our Question

How can we best predict a mental health patient's treatment outcome using their demographics, symptom severity, mood scores, and treatment types?

Methods

Methods - Preprocessing

Key Steps:

- Standardized numerical variables using StandardScaler.
- Encoded categorical variables using LabelEncoder and OneHotEncoder.
- Created binary features:
 - **Severity:** Symptom Severity > 5 = severe.
 - Mood: Mood Score ≥ 6 = good mood.
 - etc.
- Split dataset into training (80%) and testing (20%) subsets.

*Key Challenge: Imbalanced classes (Improved: 170, No Change: 159, Deteriorated: 171).

Feature Selection

- We used Random Forest Classification to find the best combination of variables in predicting outcome
- The best combination was:

	'Age',	'Symptor	n Severit
		, 'Mood	Score
		,'Physic	cal
	Activit	y (hrs/v	week)',
	'Treatme	ent Dura	ation
	(weeks)	''Treatr	nent
	Progres	s (1-10)	

Random Forest

Models Applied

- Best Cross-Validated Accuracy: 0.32
- Logistic Regression Accuracy: **0.37**
- Decision Tree Accuracy: **0.32**
- Random Forest Accuracy: **0.50**

Random Forest

Prediction Accuracy of Outcome

- 'Deteriorated': AUC=.61
- 'No Change': AUC=**.62**
- 'Improved': AUC=.45

Outcome Highlights

Performance Metrics

- We split the dataset into training (80%) and testing (20%) subsets to evaluate the performance of three models: Logistic Regression, Decision Tree, and Random Forest.
- Each model was trained on the training data and tested on the unseen test set.
- Key performance metrics—Accuracy, Precision, Recall, and F1-Score—were calculated to assess prediction quality, resulting in values like Accuracy

Logistic Regression Metrics

Accuracy: 0.3700 Precision: 0.3619 Recall: 0.3700 F1-Score: 0.3608

Decision Tree Metrics

Accuracy: 0.3200 Precision: 0.3241 Recall: 0.3200 F1-Score: 0.3207

Random Forest Metrics

Accuracy: 0.5000 Precision: 0.5041 Recall: 0.5000 F1-Score: 0.4912

 Conclusion: Random Forest achieved the highest performance (Accuracy: 0.5000, F1-Score: 0.4912), followed by Logistic Regression and Decision Tree.

Limitations/Challenges

Limitations & Challenges

- Challenges in evaluating logistic regression due to non-binary outcome categories ("Deteriorated," "No Change," and "Improved").
- Difficulty converting outcomes to binary variables, leading to imbalanced datasets when ignoring certain outcomes.
- Imbalance in predictions when focusing on subsets of outcomes (e.g., excluding "Deteriorated" or "Improved").
- Other things to consider is that the data is synthetic consisting of only 500 rows. There may be some skewed data.

Thank You!

Q&A

https://www.kaggle.com/datasets/uom 190346a/mental-health-diagnosis-and -treatment-monitoring