Clarity Kummer, Max Gehred, Eugene Ohba, Jon Karanezi

Introduction

This analysis utilizes Major League Baseball (MLB) Statcast data made publicly available by Baseball Savant to investigate whether Machine Learning techniques, considering only non-outcome-oriented offensive features, can accurately predict or classify an MLB player's offensive value as measured by On-Base-Percentage-Plus-Slugging-Percentage (OPS). This analysis consists of comparing the results of three different linear models: Linear, Lasso and Ridge, choosing the one that best predicts OPS to use on test data, for analysis and interpretation. Further, a classification model is derived that can be used to classify MLB batters as 'At Least Average' or 'Below Average,' based on OPS.

<u>Dataset</u>

The dataset comprises 538 observations and 23 features, encompassing all MLB batters from 2020 to 2023.

- The dataset considers features related to:
 - Player Info (first name, last name...)
 - At Bat Outcome Metrics (single, double, triple..)
 - At Bat Quality Metrics (exit velocity, sweet spot percentage..)

Data Preparation

- Remove duplicate observations, outliers and rows with missing values
- On-Base-Plus-Slugging-Percentage (OPS) is calculated from two other batting statistics, On-Base-Percentage (OBP) and Slugging-Percentage (SLG). To reduce multicollinearity,

this analysis considers 12, of the original 23, features not included in the OPS calculation. The 12 features included are provided in **Table 1** below.

- Train, Validation, Test Datasets: Our analysis encompasses data spanning from 2020 to 2023. We constructed a training dataset using data from 2020 to 2021, a validation dataset from 2022, and a testing dataset from 2023.
- Standardization: The data employed in all tasks was first standardized using 'StandardScaler'

Feature	Description
Strikeout Percentage	Percentage of plate appearances resulting in a strike- out
Exit Velocity Average	Average speed of the ball off the bat
Sweet Spot Percentage	Percentage of batted balls hit in the "sweet spot" of the bat
Barrel Batted Rate	Percentage of batted balls hit with optimal exit ve- locity and launch angle
Solid Contact Percentage	Percentage of batted balls hit with solid contact
Hard Hit Percentage	Percentage of batted balls hit with high exit velocity
Average Best	Average sprint speed of the player at their best
Average Hyper Speed	Average sprint speed of the player at hyper speed
Whiff Percentage	Percentage of swings resulting in a miss
Swing Percentage	Percentage of pitches swung at
Ground Ball Percentage	Percentage of batted balls hit on the ground
Flyball Percentage	Percentage of batted balls hit in the air

Regression Model Experiments

Linear Model Assumptions

For our linear model comparison, we initially ensured that included variables demonstrated a linear relationship with the target variable, OPS, as illustrated in **Appendix A1**. Further, the response, OPS, is continuous making R² evaluations inadequate, therefore, performance is assessed by Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

Linear Regression

To construct a linear regression model effective in predicting OPS, we compared the results of two models:

- Base Model: including all 12 features considered in this analysis.
- Subset / Reduced Model: including the six most significant features identified through permutation importance shown in A2.

BASE MODEL			
TRAINING DATA		VALIDATION DATA	
ERROR METRIC		ERROR METRIC	
RMSE	.058858	RMSE	.063538
MAE	.046586	MAE	.052186
SUBSET REDUCED MODEL			
TRAINING DATA		VALIDATION	DATA
ERROR METRIC		ERROR METRIC	
RMSE	.218420	RMSE	.065918
MAE	.047707	MAE	.054388

Results:

Table 2: Linear Regression Results; Train and Val

BASE MODEL		
TESTING DATA		
ERROR METRIC		
RMSE	.052448	
MAE	.0422228	

Table 3: Linear Regression Results; Test

Lasso and Ridge Regression

Utilizing 'GridSearch' with 5-fold cross validation, we investigate two different models:

- Lasso: optimal alpha level = .001
- Ridge: optimal alpha level = 4.94
- Both Lasso and Ridge found the same six most significant features shown in A3.

Results:

LASSO MODEL			
TRAINING DATA		VALIDATION DATA	
ERROR METRIC		ERROR METRIC	
RMSE	.059091	RMSE	.063316
MAE	.046518	MAE	.052077
	RIDGE	MODEL	
TRAINING DATA		VALIDATION	DATA
ERROR METRIC		ERROR METRIC	
RMSE	.059088	RMSE	.063589
MAE	.046727	MAE	.052316

LASSO MODEL			
TESTING DATA			
ERROR METRIC			
RMSE	.051917		
MAE	.041456		
RIDGE MOI	RIDGE MODEL		
TESTING DATA			
ERROR METRIC			
RMSE	.052425		
MAE	.041925		

Table 4: Lasso and Ridge Regression Results; Training and Val

Table 5: Lasso and Ridge Regression Results; Test

Testing on 2023 Data; Lasso

Linear Model Outcomes

Lasso Regression generated the highest predictive performance of all linear models, therefore we compare its predictive ability to professional OPS predictions generated by **BatX**. The Lasso model's predictions were similar to BATX's, on average predicting a **.026 higher** OPS.

Outcomes

On average BATX underpredicted OPS by .027 and Lasso model overpredicted OPS on average

by .042

Classification Model Experiments

A logistic regression model for classifying MLB as 'At Least Average' or 'Below Average' categories given their OPS, inspired by Bill James' OPS scale (A5), we established a classification task based on the table below and resolves a class imbalance using 'RandomOverSampler'.

Category	Classification	OPS range
1	At least Average	.7000 and higher
0	Below average	.6999 and lower

- Base Model: including all 12 features considered in this analysis
- Grid Search Model
- Subset Model: including only the six most significant features as identified through permutation importance analysis (A4.)

Results: (Performance was the best on the full model, so such model is used in testing.)

BASE MODEL		
Training Accuracy	.779	
Validation Accuracy	.792	
Validation Precision	.837	
GRID SEARCH	I: BASE MODEL	
Training Accuracy	.804	
Validation Accuracy	.785	
Validation Precision	.834	
SUBSET MODEL: Feature Importance		
Training Accuracy	.789	
Validation Accuracy	.777	
Validation Precision	.831	

Table 7: Logistic Regression Training and Validation Results; Base, Grid Search, and Subset Model

BASE MODEL		
Testing Accuracy	.806	
Testing Precision	.885	
AUC	.86	

Table 8: Logistic Regression Results; Test

Confusion Matrix for 2023 Test Data

Limitations

Limitations we came across are due to the limited scope of OPS such as not considering pitcher skill, ballpark effect and player health- all of which affect performance and therefore, OPS. Additionally, OPS does not consider league-wide changes, not minor-league minor-league performance data. In this way, disabling new player performance predictions.

Conclusion

Metrics relating contact quality are crucial predictors of a player's offensive value, measured by OPS. Lasso regression tended to overpredict 2023 OPS measures by an average of 0.042, while logistic regression demonstrated strong performance with an AUC of 0.86. Compared to BATX, our model projected OPS to be 0.026 higher on average, suggesting competitive performance to state-of-the-art models, but indicating potential for improvement.

Member	Proposal	Coding	Presentation	Report
Eugene	1	1	1	1
Jon	1	1	1	1
Max	1	1	1	1
Clarity	1	1	1	1

Table 1: Contributions

APPENDIX

A1)

swing_percent

A2)

A3)

A5) https://en.wikipedia.org/wiki/On-base_plus_slugging

Category	Classification	OPS range	
А	Great	.9000 and higher	
В	Very good	.8334 to .8999	
С	Above average	.7667 to .8333	
D	Average	.7000 to .7666	
E	Below average	.6334 to .6999	
F	Poor	.5667 to .6333	
G	Very poor	.5666 and lower	

A4)