
Song Recommendation Algorithm

Anthony Pagas Jack Sullivan Dylan Mahant Seth Ray Josh Richards

Introduction

In our project, our group analyzed the Spotify 1 million tracks data from kaggle. We

wanted to test if we could produce an algorithm that outputs 10 potential songs that a user would

like based on 10 songs inputted into the algorithm. In order to do so, we utilized the process of

vectorizing song features and comparing similarity. Although results are subjective, we

concluded that our algorithm performed well based on personal feedback of our group. However,

further improvements could be explored.

Data

The source of data for our project was the 1 million song Spotify dataset from Kaggle 1.

The dataset contained artists, track names, genres, and a number of numeric features describing

the songs. We did a number of preprocessing steps such as binning genres, one hot encoding

genres, min-max scaling features and excluding any ambient sleep music as it wasn’t relevant for

our project. Below you can see an example of our final processed dataframe.



In exploring our data, we wanted to formulate models that would give us a good idea of

the layout of the data we are working with and how to generalize patterns of songs. Therefore,

we constructed a TSNE dimensionality reduction 3D model with highlighted songs. Secondarily,

we also plotted the distributions of each numeric feature.



Machine Learning Approaches

We each decided to attempt to answer the question in our own way, and reconvene with

finished algorithms. Below is a summary of our methods;

Method Description

“Traditional Sklearn” We used more conventional “out of the box” Sklearn
algorithms to 1. Train a K-Means and HAC model to
assign clusters. 2. Accept user input songs. 3. Only keep
clusters of user songs. 4. Gaussian mixture to determine
which songs are most similar to the inputted songs 5.
Report the most similar songs

“TFIDF Text Analysis” In this method we attempted to use an open source
TFIDF text analysis algorithm to predict songs based on
the similarity of lyrics.

“Vectorization” In this approach we treated all numeric features of
songs as vectors, and found song recommendations
based on nearest euclidean distance pairs of user input
songs. This method tended to perform the best in our
evaluation trials conducted among group members and
friends.
Below is an illustration of the matrix used to compute
distances as well as our evaluation of the model.



An aspect of the solution we were particularly proud of developing was our dynamic feature

importance code. We figured, because people like songs for a variety of reasons, it would be hard

to generalize a universal set of features to evaluate distances on. As a solution, we ran a Monte

Carlo simulation to find statistically significant values of variance for each feature that we

treated as thresholds. If the user input variance for any given feature was lower than the

corresponding threshold, that feature was deemed important and factored into distance

calculations for song prediction.

Hyperparameter Selection

The only methods that required hyperparameter analysis was the traditional SKlearn model as it

regarded the K Means and HAC clustering algorithms. We spent some time choosing the number

of clusters for this by investigating values that optimized metrics like inertia of clusters, and

briefly looking into silhouette scores (we choose 15 clusters). However this process was less than

exhaustive because we had already determined the vectorization method was more fruitful, so we

spent considerably more time on that.

Weaknesses

We found one of the greatest weaknesses of our algorithm was the sheer volume of data

we were using. We believe with a datasource that included something like a language column to

partition songs more tailored to the user, we could have yielded even better results.



Conclusion

To recap, we wanted to test if we can produce 10 potential songs a user likes based on 10

songs a user inputs into our algorithm. Despite facing challenges with unstructured data that was

at times too broad, we were still able to produce insightful visualizations, a variety of methods to

address our driving question, and most importantly an algorithm that produces songs that are

objectively similar to user inputs (Although the human subjectivity of enjoyment makes

evaluation difficult). We are content with the results, but the algorithm could always be improved

by methods like incorporating feedback based learning: where a user can grade the algorithm

outputs, and begin to build more of a labeled data problem by providing their own labels to the

songs.

Member Proposal Coding Presentation Report

Anthony Pagas 0 0.5 1 1

Jack Sullivan 1 1 0.5 0.75

Seth Ray 1 0.8 0.75 0.5

Josh Richards 0 0.75 0.5 0.5

1. https://www.kaggle.com/datasets/amitanshjoshi/spotify-1million-tracks?select=spotify_d

ata.csv


