
Sequences: strings, tuples, and lists

Strings

A (character) string s is a sequence of characters in single quotes ('...') (or double quotes, "...",
which are the same) or in triple double quotes ("""..."""), which allow a multi-line string.

� len(s) gives its length, e.g. symbol = 'AMZN'; n = len(symbol); print(f'n={n}.')

(Note: “;” is a statement separator. I use it for concise notes. It is poor style to use it much.)

� the ith character is s[i], for an i in 0 to n - 1, e.g. symbol[0], symbol[n-1]

� the (n− i)th character is s[-i], e.g. symbol[-1]

� the slice (or substring) from low to high - 1 is s[low:high] (we can omit low or high),
e.g. symbol[1:3] # excludes symbol[3]; also try symbol[1:]

� s + t joins s to string t, e.g. symbol[2] + symbol[1]

� s * i repeats s i times, e.g. symbol[0] * 3

� s in t tells whether s is in string t, e.g. 'MZ' in symbol # also try 'ZM'

� s.index(x) gives the index of the first x in s, e.g. symbol.index('Z')

� str(object) creates a string from object, e.g. 'n=' + str(n) # try without str() too

� help(str) gives methods we may want later, like s.capitalize(), s.split(), s.find();
e.g. help(str), symbol.capitalize(), 'Madison, WI'.split(', ') # try ' ', ',' too

A string is immutable, so symbol[0] = 'B' causes an error.

Tuples

A tuple is an immutable sequence of values, often of varying types. Create a tuple from a comma-
separated set of values, usually enclosed in (), or via tuple(). The string operations, above, work
with tuples. e.g.

student = ('Badger', 'Bucky', 'junior', 123, ('FIN 310', 'MATH 223', 'CS 410'))

type(student)

type(('apple',)) # tuple of length 1 requires trailing comma

type(('apple')) # string, not tuple

student[2] = 'senior' # error: tuples are immutable

student = student[0:2] + ('senior',) + student[3:] # change variable, not tuple

A function can return only one value, but it can be a tuple. e.g.

quotient, remainder = divmod(7, 3) # (an unimportant illustrative function)

print(f'7 divided by 3 yields quotient {quotient} and remainder {remainder}.')



Lists

A list is a mutable sequence of values not necessarily of the same type; typically a list is used for
values of the same type. Create a list by enclosing values in []. The string and tuple operations,
above, work with lists. e.g.

stocks = ['GME', 'AMZN']

list_of_lists = [[0, 0], [1, 1], [2, 5], [3, 9]]

list_of_lists[2][1] = 4; list_of_lists

� .append() adds its argument as a single value to the end of a list, e.g. stocks.append('TWTR'); stocks,
stocks.append(['IBM', 'GOOG']); stocks

� .extend() appends each value of another list, e.g.

stocks = ['GME', 'AMZN']; stocks.extend(['IBM', 'GOOG']); stocks

� .remove(x) removes the first occurrence of x, e.g. stocks.remove('IBM'); stocks

� .sort() sorts, e.g. stocks.sort(); stocks

� sorted() returns a new sorted list, e.g. stocks = ['GME', 'AMZN']; sorted(stocks); stocks

� sum() adds up the list’s values, e.g. squares = [1, 4, 9]; sum(squares)

� .pop(i) removes and returns the ith value, e.g. stocks.pop(1); stocks

Two ways to traverse a sequence with a “for value in sequence:” loop

sum_squares = 0 # here we use a loop to see what sum() does; run at pythontutor.com

for value in squares: # 1st way: set value to each item in sequence

sum_squares = sum_squares + value

print(f' value={value}, sum_squares={sum_squares}') # indent code 4 spaces

product = 1 # sums start at 0, products at 1

n = len(squares)

for i in range(n): # 2nd way: set i to each index; range(n) is 0, ..., n-1

product = product * squares[i]

print(f' squares[{i}]={squares[i]}, product={product}')

e.g. Two more loops: on left, lower-case stock names; on right, find portfolio =
∑

i pricei×#sharesi:

lower_stocks = []

for stock in stocks:

lower_stocks.append(stock.lower())

print(lower_stocks)

price = (10, 15, 12); n_shares = (1, 2, 5)

portfolio = 0

for i in range(len(price)):

portfolio += price[i] * n_shares[i]

print(f'portfolio={portfolio}')

To learn more, see Think Python’s strings, lists, and tuples chapters.

https://greenteapress.com/thinkpython2/html/thinkpython2009.html
https://greenteapress.com/thinkpython2/html/thinkpython2011.html
https://greenteapress.com/thinkpython2/html/thinkpython2013.html

