STAT 405 Final Presentation

By Ella Gruen, Anthony Pagas, John Chumlea, Shien Zhu and
Samuel Negus

Introduction

Dataset: NYC Taxis

- Taxi trip records exclusively in NYC with variables such as pickup + dropoft time,
trip details, passenger count, and vendor ID

Research Question: Which taxi vendor is the most time efficient to take during any
day of the week?

Statistical Computation Method: Group-wise aggregation , we grouped trip data by
vendor ID and day of the week and calculated the mean of minutes per mile within
each group. Ex: “On Tuesday around 12 AM, CMT taxis traveling between 0-1 mile
averaged about 5.39 minutes per mile”

Data Example

vendor_id distance_bin dayofweek minutes_per_mile
CMT 0-1mi 0 3.61716386305714

CMT 0—1Tmi 2.23848840462477

CMT 0—1Tmi 5.56614460175915
6

CMT 0—1Tmi 5.56839515297479
51

CMT 0—1Tmi 6.49177598027821
2

CMT 0—1mi 7.03520771089674
3

CMT 0—1Tmi 7.65842897101342
1

CMT 2.79814533139552

CMT 5.2683728820742
94

5.567912941783701
9

Data

Source/ Size: Kaggle (httgs://www.kaggle.com/datasets/chilam/nyctaxis), 28.85 GB
Cleaning:

- Dropped all trip distances that were not a valid number
- Converted “pickup_datetime” variable into a datetime object and dropped any

corrupt time formats
- Removed trips with zero or negative distance or time

Computation:

- We ran 12 parallel jobs using 2 GB of request disk/memory and 1 CPU. All jobs
lasted about 10-20 minutes

https://www.kaggle.com/datasets/chilam/nyctaxis

Key Points of Coding

- efficiency.py
- 2GB/ csv, so doing computation for each creates an issue in the loop.
- Idea: Using chunk library, we can compute 100,000 rows each iteration.

- Parallel job

- Created a python environment, similar to the way we were able to run Python scripts in HW4.
- Issues:
- The .csv file is so large that the compute node has a difficult time doing computation -> change
python library (panda -> chunk)

- HTC doesn’t have Python environment to run our code -> Create Python environment, run code in
the environment

Results

Overall Vendor Efficiency (Lower = Faster)

vendor_id minutes_per_mile

VTS 2.1159957909080

CMT 5.6303473699478
03

Vendor Efficiency By Day Of Week

vendor_id

CMT

CMT

CMT

CMT

CMT

CMT

CMT

VTS

VTS

VTS

VTS

VTS

VTS

VTS

dayofweek

0

minutes_per_mile
4.3992049868345
61

4.6536560653587
34

4.7410015250485
89

4.7720092672802
66

4.8389871503246
9

5.0623425967464
03

10.945229998041
37

4.8898203067201
695

5.2799605433133
34

5.3190167560585
05

5.2630047292688
68

5.7956703578513
97

4.8402274974283
52

4.4242703457157
9

Vendor Efficiency By Distance Bin

vendor_id

CMT

CMT

CMT

CMT

CMT

VTS

VTS

VTS

VTS

distance_bin

0—Tmi

10mi+

1-3mi

3-6mi

6-10mi

0—Tmi

10mi+

1-3mi

3-6mi

6-10mi

minutes_per_mile
10.1977337850414
86

2.7193125560845
606

6.4943755709677
18

5.1584939856721
97

3.56818209519730
47

10.206902408405
36

2.3339834471347
545

5.6702720546749
6

4.35381253271142
2

3.01500851161379
9

Graphical Representations

Average Minutes per Mile by Day of Week and Vendor Average Vendor Efficiency by Hour of Day

Vendor ID
CMT

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sunday Monday Tuesday Wednesday Thursday Friday Saturday Hour of Day
Day of Week

6

Minutes per Mile

o}
=
S
o)
a
%]
0]
2
=
=
=
o
o
@
P
[
>
<(

Vendor == CMT == VTS

Density of Minutes per Mile by Vendor ot ol

w
=3

Vendor ID
cMT
VTS

Vendor ID

2
2
&
Q
»
2
g
=20
]

1-3mi 3-6mi 6-10mi

Minut Mil i
inutes per Mile Distance

Conclusion

\

VTS is the most efficient vendor in our NYC Taxi Data, averaging about 5 minutes
and 6 seconds per mile

Even though CMT vendor beats out VTS in minutes per mile 5 out of the 7 days
of the week, VTS beats CMT in every distance bin category except for 0-1 mile

We struggled a lot with disk space and python processing

Prevent data inconsistencies by implementing distance bin (ex: if CMT had the
second fastest time of day but only had one trip but VTS had the fastest time of
the day but had multiple trips, CMT has a bias)

