
STAT 333: Two-Sample t-Test as a Special Case of Linear

Regression

Lecture Notes (Weeks 1–2)

February 18, 2025

Overview

These notes combine:

• A student’s handwritten notes from the first lecture on simple linear regression and its con-
nection to the two-sample t-test.

• Blackboard work shown in lecture (images provided).

• A transcription of the instructor’s second lecture, expanded and organized into coherent
explanations.

We focus on how the two-sample t-test is a special case of simple linear regression and introduce
why regression (including multiple regression) is important for understanding relationships (and
differences) in data.

1 Lecture 1 Notes (Student Transcription)

1.1 Simple Linear Model

• We collect (xi, yi) for i = 1, . . . , n, where xi is a feature (or predictor) and yi is an outcome
(or response).

• The simple linear model posits

yi = β0 + β1 xi + εi, εi ∼ N (0, σ2) i.i.d.

• Our goal is to estimate the parameters β0 (intercept) and β1 (slope).

1.2 Recall: t-test

• In a one-sample t-test setting, we assume

yi ∼ N (µ, σ2) i.i.d.,

and the null hypothesis is often H0 : µ = 0 (or some other specified value). The usual
estimator of µ is

µ̂ = ȳ =
1

n

n∑
i=1

yi.
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1.3 Linear Model as a Generalization of the t-test

• Two-sample t-test: Suppose we have two groups (control vs. treatment). The two-sample
t-test model can be written as:

yi ∼ N (µC , σ
2) (control group), yi ∼ N (µT , σ

2) (treatment group).

The null hypothesis is H0 : µC = µT .

• To see this as a regression, define a dummy variable

xi =

{
0, if i is in control,

1, if i is in treatment.

Then the regression model

yi = β0 + β1xi + εi, εi ∼ N (0, σ2)

becomes
yi = β0 + εi (if xi = 0),

yi = β0 + β1 + εi (if xi = 1),

which matches the two-sample setup:

yi ∼ N (β0, σ
2) (group 0), yi ∼ N (β0 + β1, σ

2) (group 1).

Here, β0 corresponds to µC and β0 + β1 corresponds to µT .

1.4 Summary of Lecture 1

• Key insight: Two-sample t-test is indeed a special case of simple linear regression
when xi ∈ {0, 1}.

• Testing H0 : β1 = 0 in the regression is equivalent to testing H0 : µC = µT in the two-sample
t-test.

2 Blackboard Highlights (End of Lecture 1 & Beginning of Lecture
2)

From the provided images, the board contained:

• Threads from previous lecture:

“Two-sample t-test is a special case of linear regression.”

• Defining a 0–1 (dummy) variable for two groups:

xi =

{
0 (control group),

1 (treatment group).
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• Simple Linear Regression (SLR) model:

Yi = β0 + β1 xi + εi, εi ∼ N (0, σ2) i.i.d.

• Equivalence to T-test distributions:

Yi ∼ N (β0, σ
2), if xi = 0 (control),

Yi ∼ N (β0 + β1, σ
2), if xi = 1 (treated).

• Testing H0 : β1 = 0:

This is the same as asking if there’s no difference between treatment and control means.

3 Lecture 2 (Instructor’s Transcribed Discussion, Organized)

Below is a condensed and edited version of the instructor’s spoken remarks, showing how they
connect to the blackboard material above and expanding on the reasoning behind treating the
t-test as a regression.

3.1 Recap: Two-Sample t-Test and Simple Linear Regression

• At the start of Lecture 2, the instructor asked the class to recall “threads” from the previous
lecture. The main takeaway: the two-sample t-test is a special case of linear regression.

• If there are two groups (treated vs. control), define the dummy variable xi ∈ {0, 1}. Then

Yi = β0 + β1 xi + εi, εi ∼ N (0, σ2) i.i.d.

• Under this setup,

if xi = 0 Yi = β0 + εi, if xi = 1 Yi = β0 + β1 + εi.

• That matches the two-sample model

Yi ∼ N (β0, σ
2) or Yi ∼ N (β0 + β1, σ

2),

respectively. Hence, β1 is the difference in means.

• Testing H0 : β1 = 0 in regression ←→ H0 : µC = µT in the two-sample t-test.

3.2 Model vs. Data (Probability vs. Statistics)

• Early in the course, we are focusing on the model side, i.e. specifying how Yi is distributed
(its mean, variance, dependence on Xi, etc.), without yet diving into estimators or explicit
data-based formulas.

• “Probability” is about specifying these distributions; “statistics” is about using sample data
to estimate or test parameters.

• The big step forward is to see that once you can write Yi = β0 + β1 xi + εi, you can carry out
the usual T-test ideas (for a difference in means) by simply testing if β1 = 0.
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3.3 Generalizing Beyond Two Groups (Motivation for More Regression)

• The instructor emphasized that while a dummy variable captures two categories, we can let
xi be any real value: {xi ∈ R}.

• Then Yi = β0 +β1 xi +εi can capture many relationships: e.g. X = (SAT score), Y = (college
GPA). Testing β1 = 0 asks “Does GPA systematically change with SAT score?”

• This leads to the broad power of linear regression—it can incorporate continuous or cate-
gorical features xi, or multiple features simultaneously (multiple regression).

3.4 Example: Automatic vs. Manual Cars (Why Regression Matters)

• Instructor gave an example of comparing fuel efficiency (miles per gallon, MPG) in cars with
either automatic or manual transmissions.

• A simple two-sample t-test of MPG vs. transmission type might show a large, statistically
significant difference. For instance, old data might show manual cars have higher MPG on
average.

• However, many other variables affect MPG: engine size, weight, etc. Manual cars often also
have smaller engines (lower weight), so “Manual vs. Automatic” alone might be conflating
the effect of engine size with the transmission type.

• Multiple regression can adjust for these confounding variables (engine size, weight, etc.),
allowing one to isolate the effect of transmission itself.

3.5 Key Takeaways

1. Two-sample t-test ←→ simple linear regression with a 0–1 indicator.

2. Testing β1 = 0 in the regression is exactly testing if the mean responses in two groups are
equal.

3. Linear regression extends further: it lets xi be continuous or includes multiple x’s (multiple
regression) to handle confounding factors.

4 Conclusion & Next Steps

• We have shown conceptually and algebraically how the classical two-sample t-test is a
particular case of the simple linear regression model.

• The “treatment” vs. “control” distinction is encoded by a dummy variable xi ∈ {0, 1}. Under
the null hypothesis β1 = 0, we are asserting no difference in means.

• In practice, linear regression is far more flexible, especially as we move into multiple regression,
enabling us to include extra predictors, account for confounding, and refine our understanding
of how variables relate to each other.

End of compiled lecture notes.
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